numpy.log2¶
-
numpy.
log2
(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'log2'>¶ Base-2 logarithm of x.
Parameters: x : array_like
Input values.
out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
where : array_like, optional
Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.
**kwargs
For other keyword-only arguments, see the ufunc docs.
Returns: y : ndarray
Base-2 logarithm of x.
Notes
New in version 1.3.0.
Logarithm is a multivalued function: for each x there is an infinite number of z such that 2**z = x. The convention is to return the z whose imaginary part lies in [-pi, pi].
For real-valued input data types,
log2
always returns real output. For each value that cannot be expressed as a real number or infinity, it yieldsnan
and sets the invalid floating point error flag.For complex-valued input,
log2
is a complex analytical function that has a branch cut [-inf, 0] and is continuous from above on it.log2
handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard.Examples
>>> x = np.array([0, 1, 2, 2**4]) >>> np.log2(x) array([-Inf, 0., 1., 4.])
>>> xi = np.array([0+1.j, 1, 2+0.j, 4.j]) >>> np.log2(xi) array([ 0.+2.26618007j, 0.+0.j , 1.+0.j , 2.+2.26618007j])