NumPy

Previous topic

numpy.random.Generator.dirichlet

Next topic

numpy.random.Generator.f

This is documentation for an old release of NumPy (version 1.18). Read this page in the documentation of the latest stable release (version 2.2).

numpy.random.Generator.exponential

method

Generator.exponential(scale=1.0, size=None)

Draw samples from an exponential distribution.

Its probability density function is

f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

for x > 0 and 0 elsewhere. \beta is the scale parameter, which is the inverse of the rate parameter \lambda = 1/\beta. The rate parameter is an alternative, widely used parameterization of the exponential distribution [3].

The exponential distribution is a continuous analogue of the geometric distribution. It describes many common situations, such as the size of raindrops measured over many rainstorms [1], or the time between page requests to Wikipedia [2].

Parameters
scalefloat or array_like of floats

The scale parameter, \beta = 1/\lambda. Must be non-negative.

sizeint or tuple of ints, optional

Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn. If size is None (default), a single value is returned if scale is a scalar. Otherwise, np.array(scale).size samples are drawn.

Returns
outndarray or scalar

Drawn samples from the parameterized exponential distribution.

References

1

Peyton Z. Peebles Jr., “Probability, Random Variables and Random Signal Principles”, 4th ed, 2001, p. 57.

2

Wikipedia, “Poisson process”, https://en.wikipedia.org/wiki/Poisson_process

3

Wikipedia, “Exponential distribution”, https://en.wikipedia.org/wiki/Exponential_distribution