NumPy

Random Generator

The Generator provides access to a wide range of distributions, and served as a replacement for RandomState. The main difference between the two is that Generator relies on an additional BitGenerator to manage state and generate the random bits, which are then transformed into random values from useful distributions. The default BitGenerator used by Generator is PCG64. The BitGenerator can be changed by passing an instantized BitGenerator to Generator.

numpy.random.default_rng()

Construct a new Generator with the default BitGenerator (PCG64).

Parameters
seed{None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional

A seed to initialize the BitGenerator. If None, then fresh, unpredictable entropy will be pulled from the OS. If an int or array_like[ints] is passed, then it will be passed to SeedSequence to derive the initial BitGenerator state. One may also pass in a`SeedSequence` instance Additionally, when passed a BitGenerator, it will be wrapped by Generator. If passed a Generator, it will be returned unaltered.

Returns
Generator

The initialized generator object.

Notes

If seed is not a BitGenerator or a Generator, a new BitGenerator is instantiated. This function does not manage a default global instance.

class numpy.random.Generator(bit_generator)

Container for the BitGenerators.

Generator exposes a number of methods for generating random numbers drawn from a variety of probability distributions. In addition to the distribution-specific arguments, each method takes a keyword argument size that defaults to None. If size is None, then a single value is generated and returned. If size is an integer, then a 1-D array filled with generated values is returned. If size is a tuple, then an array with that shape is filled and returned.

The function numpy.random.default_rng will instantiate a Generator with numpy’s default BitGenerator.

No Compatibility Guarantee

Generator does not provide a version compatibility guarantee. In particular, as better algorithms evolve the bit stream may change.

Parameters
bit_generatorBitGenerator

BitGenerator to use as the core generator.

See also

default_rng

Recommended constructor for Generator.

Notes

The Python stdlib module random contains pseudo-random number generator with a number of methods that are similar to the ones available in Generator. It uses Mersenne Twister, and this bit generator can be accessed using MT19937. Generator, besides being NumPy-aware, has the advantage that it provides a much larger number of probability distributions to choose from.

Examples

>>> from numpy.random import Generator, PCG64
>>> rg = Generator(PCG64())
>>> rg.standard_normal()
-0.203  # random

Accessing the BitGenerator

bit_generator

Gets the bit generator instance used by the generator

Simple random data

integers(low[, high, size, dtype, endpoint])

Return random integers from low (inclusive) to high (exclusive), or if endpoint=True, low (inclusive) to high (inclusive).

random([size, dtype, out])

Return random floats in the half-open interval [0.0, 1.0).

choice()

choice(a, size=None, replace=True, p=None, axis=0):

bytes(length)

Return random bytes.

Permutations

shuffle(x[, axis])

Modify a sequence in-place by shuffling its contents.

permutation(x[, axis])

Randomly permute a sequence, or return a permuted range.

Distributions

beta(a, b[, size])

Draw samples from a Beta distribution.

binomial(n, p[, size])

Draw samples from a binomial distribution.

chisquare(df[, size])

Draw samples from a chi-square distribution.

dirichlet(alpha[, size])

Draw samples from the Dirichlet distribution.

exponential([scale, size])

Draw samples from an exponential distribution.

f(dfnum, dfden[, size])

Draw samples from an F distribution.

gamma(shape[, scale, size])

Draw samples from a Gamma distribution.

geometric(p[, size])

Draw samples from the geometric distribution.

gumbel([loc, scale, size])

Draw samples from a Gumbel distribution.

hypergeometric(ngood, nbad, nsample[, size])

Draw samples from a Hypergeometric distribution.

laplace([loc, scale, size])

Draw samples from the Laplace or double exponential distribution with specified location (or mean) and scale (decay).

logistic([loc, scale, size])

Draw samples from a logistic distribution.

lognormal([mean, sigma, size])

Draw samples from a log-normal distribution.

logseries(p[, size])

Draw samples from a logarithmic series distribution.

multinomial(n, pvals[, size])

Draw samples from a multinomial distribution.

multivariate_hypergeometric(colors, nsample)

Generate variates from a multivariate hypergeometric distribution.

multivariate_normal(mean, cov[, size, …])

Draw random samples from a multivariate normal distribution.

negative_binomial(n, p[, size])

Draw samples from a negative binomial distribution.

noncentral_chisquare(df, nonc[, size])

Draw samples from a noncentral chi-square distribution.

noncentral_f(dfnum, dfden, nonc[, size])

Draw samples from the noncentral F distribution.

normal([loc, scale, size])

Draw random samples from a normal (Gaussian) distribution.

pareto(a[, size])

Draw samples from a Pareto II or Lomax distribution with specified shape.

poisson([lam, size])

Draw samples from a Poisson distribution.

power(a[, size])

Draws samples in [0, 1] from a power distribution with positive exponent a - 1.

rayleigh([scale, size])

Draw samples from a Rayleigh distribution.

standard_cauchy([size])

Draw samples from a standard Cauchy distribution with mode = 0.

standard_exponential([size, dtype, method, out])

Draw samples from the standard exponential distribution.

standard_gamma(shape[, size, dtype, out])

Draw samples from a standard Gamma distribution.

standard_normal([size, dtype, out])

Draw samples from a standard Normal distribution (mean=0, stdev=1).

standard_t(df[, size])

Draw samples from a standard Student’s t distribution with df degrees of freedom.

triangular(left, mode, right[, size])

Draw samples from the triangular distribution over the interval [left, right].

uniform([low, high, size])

Draw samples from a uniform distribution.

vonmises(mu, kappa[, size])

Draw samples from a von Mises distribution.

wald(mean, scale[, size])

Draw samples from a Wald, or inverse Gaussian, distribution.

weibull(a[, size])

Draw samples from a Weibull distribution.

zipf(a[, size])

Draw samples from a Zipf distribution.