numpy.testing.assert_almost_equal¶
- 
numpy.testing.assert_almost_equal(actual, desired, decimal=7, err_msg='', verbose=True)[source]¶
- Raises an AssertionError if two items are not equal up to desired precision. - Note - It is recommended to use one of - assert_allclose,- assert_array_almost_equal_nulpor- assert_array_max_ulpinstead of this function for more consistent floating point comparisons.- The test verifies that the elements of - actualand- desiredsatisfy.- abs(desired-actual) < 1.5 * 10**(-decimal)- That is a looser test than originally documented, but agrees with what the actual implementation in - assert_array_almost_equaldid up to rounding vagaries. An exception is raised at conflicting values. For ndarrays this delegates to assert_array_almost_equal- Parameters
- actualarray_like
- The object to check. 
- desiredarray_like
- The expected object. 
- decimalint, optional
- Desired precision, default is 7. 
- err_msgstr, optional
- The error message to be printed in case of failure. 
- verbosebool, optional
- If True, the conflicting values are appended to the error message. 
 
- Raises
- AssertionError
- If actual and desired are not equal up to specified precision. 
 
 - See also - assert_allclose
- Compare two array_like objects for equality with desired relative and/or absolute precision. 
 - assert_array_almost_equal_nulp,- assert_array_max_ulp,- assert_equal- Examples - >>> import numpy.testing as npt >>> npt.assert_almost_equal(2.3333333333333, 2.33333334) >>> npt.assert_almost_equal(2.3333333333333, 2.33333334, decimal=10) Traceback (most recent call last): ... AssertionError: Arrays are not almost equal to 10 decimals ACTUAL: 2.3333333333333 DESIRED: 2.33333334 - >>> npt.assert_almost_equal(np.array([1.0,2.3333333333333]), ... np.array([1.0,2.33333334]), decimal=9) Traceback (most recent call last): ... AssertionError: Arrays are not almost equal to 9 decimals Mismatched elements: 1 / 2 (50%) Max absolute difference: 6.66669964e-09 Max relative difference: 2.85715698e-09 x: array([1. , 2.333333333]) y: array([1. , 2.33333334]) 
