numpy.testing.assert_approx_equal¶
- 
numpy.testing.assert_approx_equal(actual, desired, significant=7, err_msg='', verbose=True)[source]¶
- Raises an AssertionError if two items are not equal up to significant digits. - Note - It is recommended to use one of - assert_allclose,- assert_array_almost_equal_nulpor- assert_array_max_ulpinstead of this function for more consistent floating point comparisons.- Given two numbers, check that they are approximately equal. Approximately equal is defined as the number of significant digits that agree. - Parameters
- actualscalar
- The object to check. 
- desiredscalar
- The expected object. 
- significantint, optional
- Desired precision, default is 7. 
- err_msgstr, optional
- The error message to be printed in case of failure. 
- verbosebool, optional
- If True, the conflicting values are appended to the error message. 
 
- Raises
- AssertionError
- If actual and desired are not equal up to specified precision. 
 
 - See also - assert_allclose
- Compare two array_like objects for equality with desired relative and/or absolute precision. 
 - assert_array_almost_equal_nulp,- assert_array_max_ulp,- assert_equal- Examples - >>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20) >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20, ... significant=8) >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20, ... significant=8) Traceback (most recent call last): ... AssertionError: Items are not equal to 8 significant digits: ACTUAL: 1.234567e-21 DESIRED: 1.2345672e-21 - the evaluated condition that raises the exception is - >>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1) True 
