numpy.
allclose
Returns True if two arrays are element-wise equal within a tolerance.
The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(b)) and the absolute difference atol are added together to compare against the absolute difference between a and b.
NaNs are treated as equal if they are in the same place and if equal_nan=True. Infs are treated as equal if they are in the same place and of the same sign in both arrays.
equal_nan=True
Input arrays to compare.
The relative tolerance parameter (see Notes).
The absolute tolerance parameter (see Notes).
Whether to compare NaN’s as equal. If True, NaN’s in a will be considered equal to NaN’s in b in the output array.
New in version 1.10.0.
Returns True if the two arrays are equal within the given tolerance; False otherwise.
See also
isclose
all
any
equal
Notes
If the following equation is element-wise True, then allclose returns True.
absolute(a - b) <= (atol + rtol * absolute(b))
The above equation is not symmetric in a and b, so that allclose(a, b) might be different from allclose(b, a) in some rare cases.
allclose(a, b)
allclose(b, a)
The comparison of a and b uses standard broadcasting, which means that a and b need not have the same shape in order for allclose(a, b) to evaluate to True. The same is true for equal but not array_equal.
array_equal
allclose is not defined for non-numeric data types.
Examples
>>> np.allclose([1e10,1e-7], [1.00001e10,1e-8]) False >>> np.allclose([1e10,1e-8], [1.00001e10,1e-9]) True >>> np.allclose([1e10,1e-8], [1.0001e10,1e-9]) False >>> np.allclose([1.0, np.nan], [1.0, np.nan]) False >>> np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True) True