ma.MaskType
alias of numpy.bool_
numpy.bool_
ma.masked_array
alias of numpy.ma.core.MaskedArray
numpy.ma.core.MaskedArray
ma.array(data[, dtype, copy, order, mask, …])
ma.array
An array class with possibly masked values.
ma.copy(self, *args, **params) a.copy(order=)
ma.copy
Return a copy of the array.
ma.frombuffer(buffer[, dtype, count, …])
ma.frombuffer
Interpret a buffer as a 1-dimensional array.
ma.fromfunction(function, shape, **dtype)
ma.fromfunction
Construct an array by executing a function over each coordinate.
ma.MaskedArray.copy([order])
ma.MaskedArray.copy
ma.empty(shape[, dtype, order, like])
ma.empty
Return a new array of given shape and type, without initializing entries.
ma.empty_like(prototype[, dtype, order, …])
ma.empty_like
Return a new array with the same shape and type as a given array.
ma.masked_all(shape[, dtype])
ma.masked_all
Empty masked array with all elements masked.
ma.masked_all_like(arr)
ma.masked_all_like
Empty masked array with the properties of an existing array.
ma.ones(shape[, dtype, order])
ma.ones
Return a new array of given shape and type, filled with ones.
ma.zeros(shape[, dtype, order, like])
ma.zeros
Return a new array of given shape and type, filled with zeros.
ma.all(self[, axis, out, keepdims])
ma.all
Returns True if all elements evaluate to True.
ma.any(self[, axis, out, keepdims])
ma.any
Returns True if any of the elements of a evaluate to True.
ma.count(self[, axis, keepdims])
ma.count
Count the non-masked elements of the array along the given axis.
ma.count_masked(arr[, axis])
ma.count_masked
Count the number of masked elements along the given axis.
ma.getmask(a)
ma.getmask
Return the mask of a masked array, or nomask.
ma.getmaskarray(arr)
ma.getmaskarray
Return the mask of a masked array, or full boolean array of False.
ma.getdata(a[, subok])
ma.getdata
Return the data of a masked array as an ndarray.
ma.nonzero(self)
ma.nonzero
Return the indices of unmasked elements that are not zero.
ma.shape(obj)
ma.shape
Return the shape of an array.
ma.size(obj[, axis])
ma.size
Return the number of elements along a given axis.
ma.is_masked(x)
ma.is_masked
Determine whether input has masked values.
ma.is_mask(m)
ma.is_mask
Return True if m is a valid, standard mask.
ma.isMaskedArray(x)
ma.isMaskedArray
Test whether input is an instance of MaskedArray.
ma.isMA(x)
ma.isMA
ma.isarray(x)
ma.isarray
ma.MaskedArray.all([axis, out, keepdims])
ma.MaskedArray.all
ma.MaskedArray.any([axis, out, keepdims])
ma.MaskedArray.any
ma.MaskedArray.count([axis, keepdims])
ma.MaskedArray.count
ma.MaskedArray.nonzero()
ma.MaskedArray.nonzero
ma.MaskedArray.data
Returns the underlying data, as a view of the masked array.
ma.MaskedArray.mask
Current mask.
ma.MaskedArray.recordmask
Get or set the mask of the array if it has no named fields.
ma.ravel(self[, order])
ma.ravel
Returns a 1D version of self, as a view.
ma.reshape(a, new_shape[, order])
ma.reshape
Returns an array containing the same data with a new shape.
ma.resize(x, new_shape)
ma.resize
Return a new masked array with the specified size and shape.
ma.MaskedArray.flatten([order])
ma.MaskedArray.flatten
Return a copy of the array collapsed into one dimension.
ma.MaskedArray.ravel([order])
ma.MaskedArray.ravel
ma.MaskedArray.reshape(*s, **kwargs)
ma.MaskedArray.reshape
Give a new shape to the array without changing its data.
ma.MaskedArray.resize(newshape[, refcheck, …])
ma.MaskedArray.resize
ma.swapaxes(self, *args, …)
ma.swapaxes
Return a view of the array with axis1 and axis2 interchanged.
ma.transpose(a[, axes])
ma.transpose
Permute the dimensions of an array.
ma.MaskedArray.swapaxes(axis1, axis2)
ma.MaskedArray.swapaxes
ma.MaskedArray.transpose(*axes)
ma.MaskedArray.transpose
Returns a view of the array with axes transposed.
ma.atleast_1d(*args, **kwargs)
ma.atleast_1d
Convert inputs to arrays with at least one dimension.
ma.atleast_2d(*args, **kwargs)
ma.atleast_2d
View inputs as arrays with at least two dimensions.
ma.atleast_3d(*args, **kwargs)
ma.atleast_3d
View inputs as arrays with at least three dimensions.
ma.expand_dims(a, axis)
ma.expand_dims
Expand the shape of an array.
ma.squeeze(a[, axis])
ma.squeeze
Remove axes of length one from a.
ma.MaskedArray.squeeze([axis])
ma.MaskedArray.squeeze
ma.stack(*args, **kwargs)
ma.stack
Join a sequence of arrays along a new axis.
ma.column_stack(*args, **kwargs)
ma.column_stack
Stack 1-D arrays as columns into a 2-D array.
ma.concatenate(arrays[, axis])
ma.concatenate
Concatenate a sequence of arrays along the given axis.
ma.dstack(*args, **kwargs)
ma.dstack
Stack arrays in sequence depth wise (along third axis).
ma.hstack(*args, **kwargs)
ma.hstack
Stack arrays in sequence horizontally (column wise).
ma.hsplit(*args, **kwargs)
ma.hsplit
Split an array into multiple sub-arrays horizontally (column-wise).
ma.mr_
Translate slice objects to concatenation along the first axis.
ma.row_stack(*args, **kwargs)
ma.row_stack
Stack arrays in sequence vertically (row wise).
ma.vstack(*args, **kwargs)
ma.vstack
ma.append(a, b[, axis])
ma.append
Append values to the end of an array.
ma.make_mask(m[, copy, shrink, dtype])
ma.make_mask
Create a boolean mask from an array.
ma.make_mask_none(newshape[, dtype])
ma.make_mask_none
Return a boolean mask of the given shape, filled with False.
ma.mask_or(m1, m2[, copy, shrink])
ma.mask_or
Combine two masks with the logical_or operator.
logical_or
ma.make_mask_descr(ndtype)
ma.make_mask_descr
Construct a dtype description list from a given dtype.
ma.masked_array.mask
ma.flatnotmasked_contiguous(a)
ma.flatnotmasked_contiguous
Find contiguous unmasked data in a masked array along the given axis.
ma.flatnotmasked_edges(a)
ma.flatnotmasked_edges
Find the indices of the first and last unmasked values.
ma.notmasked_contiguous(a[, axis])
ma.notmasked_contiguous
ma.notmasked_edges(a[, axis])
ma.notmasked_edges
Find the indices of the first and last unmasked values along an axis.
ma.clump_masked(a)
ma.clump_masked
Returns a list of slices corresponding to the masked clumps of a 1-D array.
ma.clump_unmasked(a)
ma.clump_unmasked
Return list of slices corresponding to the unmasked clumps of a 1-D array.
ma.mask_cols(a[, axis])
ma.mask_cols
Mask columns of a 2D array that contain masked values.
ma.mask_rowcols(a[, axis])
ma.mask_rowcols
Mask rows and/or columns of a 2D array that contain masked values.
ma.mask_rows(a[, axis])
ma.mask_rows
Mask rows of a 2D array that contain masked values.
ma.harden_mask(self)
ma.harden_mask
Force the mask to hard.
ma.soften_mask(self)
ma.soften_mask
Force the mask to soft.
ma.MaskedArray.harden_mask()
ma.MaskedArray.harden_mask
ma.MaskedArray.soften_mask()
ma.MaskedArray.soften_mask
ma.MaskedArray.shrink_mask()
ma.MaskedArray.shrink_mask
Reduce a mask to nomask when possible.
ma.MaskedArray.unshare_mask()
ma.MaskedArray.unshare_mask
Copy the mask and set the sharedmask flag to False.
ma.asarray(a[, dtype, order])
ma.asarray
Convert the input to a masked array of the given data-type.
ma.asanyarray(a[, dtype])
ma.asanyarray
Convert the input to a masked array, conserving subclasses.
ma.fix_invalid(a[, mask, copy, fill_value])
ma.fix_invalid
Return input with invalid data masked and replaced by a fill value.
ma.masked_equal(x, value[, copy])
ma.masked_equal
Mask an array where equal to a given value.
ma.masked_greater(x, value[, copy])
ma.masked_greater
Mask an array where greater than a given value.
ma.masked_greater_equal(x, value[, copy])
ma.masked_greater_equal
Mask an array where greater than or equal to a given value.
ma.masked_inside(x, v1, v2[, copy])
ma.masked_inside
Mask an array inside a given interval.
ma.masked_invalid(a[, copy])
ma.masked_invalid
Mask an array where invalid values occur (NaNs or infs).
ma.masked_less(x, value[, copy])
ma.masked_less
Mask an array where less than a given value.
ma.masked_less_equal(x, value[, copy])
ma.masked_less_equal
Mask an array where less than or equal to a given value.
ma.masked_not_equal(x, value[, copy])
ma.masked_not_equal
Mask an array where not equal to a given value.
ma.masked_object(x, value[, copy, shrink])
ma.masked_object
Mask the array x where the data are exactly equal to value.
ma.masked_outside(x, v1, v2[, copy])
ma.masked_outside
Mask an array outside a given interval.
ma.masked_values(x, value[, rtol, atol, …])
ma.masked_values
Mask using floating point equality.
ma.masked_where(condition, a[, copy])
ma.masked_where
Mask an array where a condition is met.
ma.compress_cols(a)
ma.compress_cols
Suppress whole columns of a 2-D array that contain masked values.
ma.compress_rowcols(x[, axis])
ma.compress_rowcols
Suppress the rows and/or columns of a 2-D array that contain masked values.
ma.compress_rows(a)
ma.compress_rows
Suppress whole rows of a 2-D array that contain masked values.
ma.compressed(x)
ma.compressed
Return all the non-masked data as a 1-D array.
ma.filled(a[, fill_value])
ma.filled
Return input as an array with masked data replaced by a fill value.
ma.MaskedArray.compressed()
ma.MaskedArray.compressed
ma.MaskedArray.filled([fill_value])
ma.MaskedArray.filled
Return a copy of self, with masked values filled with a given value.
ma.MaskedArray.tofile(fid[, sep, format])
ma.MaskedArray.tofile
Save a masked array to a file in binary format.
ma.MaskedArray.tolist([fill_value])
ma.MaskedArray.tolist
Return the data portion of the masked array as a hierarchical Python list.
ma.MaskedArray.torecords()
ma.MaskedArray.torecords
Transforms a masked array into a flexible-type array.
ma.MaskedArray.tobytes([fill_value, order])
ma.MaskedArray.tobytes
Return the array data as a string containing the raw bytes in the array.
ma.common_fill_value(a, b)
ma.common_fill_value
Return the common filling value of two masked arrays, if any.
ma.default_fill_value(obj)
ma.default_fill_value
Return the default fill value for the argument object.
ma.maximum_fill_value(obj)
ma.maximum_fill_value
Return the minimum value that can be represented by the dtype of an object.
ma.minimum_fill_value(obj)
ma.minimum_fill_value
Return the maximum value that can be represented by the dtype of an object.
ma.set_fill_value(a, fill_value)
ma.set_fill_value
Set the filling value of a, if a is a masked array.
ma.MaskedArray.get_fill_value()
ma.MaskedArray.get_fill_value
The filling value of the masked array is a scalar.
ma.MaskedArray.set_fill_value([value])
ma.MaskedArray.set_fill_value
ma.MaskedArray.fill_value
ma.anom(self[, axis, dtype])
ma.anom
Compute the anomalies (deviations from the arithmetic mean) along the given axis.
ma.anomalies(self[, axis, dtype])
ma.anomalies
ma.average(a[, axis, weights, returned])
ma.average
Return the weighted average of array over the given axis.
ma.conjugate(x, /[, out, where, casting, …])
ma.conjugate
Return the complex conjugate, element-wise.
ma.corrcoef(x[, y, rowvar, bias, …])
ma.corrcoef
Return Pearson product-moment correlation coefficients.
ma.cov(x[, y, rowvar, bias, allow_masked, ddof])
ma.cov
Estimate the covariance matrix.
ma.cumsum(self[, axis, dtype, out])
ma.cumsum
Return the cumulative sum of the array elements over the given axis.
ma.cumprod(self[, axis, dtype, out])
ma.cumprod
Return the cumulative product of the array elements over the given axis.
ma.mean(self[, axis, dtype, out, keepdims])
ma.mean
Returns the average of the array elements along given axis.
ma.median(a[, axis, out, overwrite_input, …])
ma.median
Compute the median along the specified axis.
ma.power(a, b[, third])
ma.power
Returns element-wise base array raised to power from second array.
ma.prod(self[, axis, dtype, out, keepdims])
ma.prod
Return the product of the array elements over the given axis.
ma.std(self[, axis, dtype, out, ddof, keepdims])
ma.std
Returns the standard deviation of the array elements along given axis.
ma.sum(self[, axis, dtype, out, keepdims])
ma.sum
Return the sum of the array elements over the given axis.
ma.var(self[, axis, dtype, out, ddof, keepdims])
ma.var
Compute the variance along the specified axis.
ma.MaskedArray.anom([axis, dtype])
ma.MaskedArray.anom
ma.MaskedArray.cumprod([axis, dtype, out])
ma.MaskedArray.cumprod
ma.MaskedArray.cumsum([axis, dtype, out])
ma.MaskedArray.cumsum
ma.MaskedArray.mean([axis, dtype, out, keepdims])
ma.MaskedArray.mean
ma.MaskedArray.prod([axis, dtype, out, keepdims])
ma.MaskedArray.prod
ma.MaskedArray.std([axis, dtype, out, ddof, …])
ma.MaskedArray.std
ma.MaskedArray.sum([axis, dtype, out, keepdims])
ma.MaskedArray.sum
ma.MaskedArray.var([axis, dtype, out, ddof, …])
ma.MaskedArray.var
ma.argmax(self[, axis, fill_value, out])
ma.argmax
Returns array of indices of the maximum values along the given axis.
ma.argmin(self[, axis, fill_value, out])
ma.argmin
Return array of indices to the minimum values along the given axis.
ma.max(obj[, axis, out, fill_value, keepdims])
ma.max
Return the maximum along a given axis.
ma.min(obj[, axis, out, fill_value, keepdims])
ma.min
Return the minimum along a given axis.
ma.ptp(obj[, axis, out, fill_value, keepdims])
ma.ptp
Return (maximum - minimum) along the given dimension (i.e.
ma.MaskedArray.argmax([axis, fill_value, out])
ma.MaskedArray.argmax
ma.MaskedArray.argmin([axis, fill_value, out])
ma.MaskedArray.argmin
ma.MaskedArray.max([axis, out, fill_value, …])
ma.MaskedArray.max
ma.MaskedArray.min([axis, out, fill_value, …])
ma.MaskedArray.min
ma.MaskedArray.ptp([axis, out, fill_value, …])
ma.MaskedArray.ptp
ma.argsort(a[, axis, kind, order, endwith, …])
ma.argsort
Return an ndarray of indices that sort the array along the specified axis.
ma.sort(a[, axis, kind, order, endwith, …])
ma.sort
Return a sorted copy of the masked array.
ma.MaskedArray.argsort([axis, kind, order, …])
ma.MaskedArray.argsort
ma.MaskedArray.sort([axis, kind, order, …])
ma.MaskedArray.sort
Sort the array, in-place
ma.diag(v[, k])
ma.diag
Extract a diagonal or construct a diagonal array.
ma.dot(a, b[, strict, out])
ma.dot
Return the dot product of two arrays.
ma.identity(n[, dtype])
ma.identity
Return the identity array.
ma.inner(a, b)
ma.inner
Inner product of two arrays.
ma.innerproduct(a, b)
ma.innerproduct
ma.outer(a, b)
ma.outer
Compute the outer product of two vectors.
ma.outerproduct(a, b)
ma.outerproduct
ma.trace(self[, offset, axis1, axis2, …])
ma.trace
Return the sum along diagonals of the array.
ma.MaskedArray.trace([offset, axis1, axis2, …])
ma.MaskedArray.trace
ma.vander(x[, n])
ma.vander
Generate a Vandermonde matrix.
ma.polyfit(x, y, deg[, rcond, full, w, cov])
ma.polyfit
Least squares polynomial fit.
ma.around
Round an array to the given number of decimals.
ma.clip(a, a_min, a_max[, out])
ma.clip
Clip (limit) the values in an array.
ma.round(a[, decimals, out])
ma.round
Return a copy of a, rounded to ‘decimals’ places.
ma.MaskedArray.clip([min, max, out])
ma.MaskedArray.clip
Return an array whose values are limited to [min, max].
[min, max]
ma.MaskedArray.round([decimals, out])
ma.MaskedArray.round
Return each element rounded to the given number of decimals.
ma.allequal(a, b[, fill_value])
ma.allequal
Return True if all entries of a and b are equal, using fill_value as a truth value where either or both are masked.
ma.allclose(a, b[, masked_equal, rtol, atol])
ma.allclose
Returns True if two arrays are element-wise equal within a tolerance.
ma.apply_along_axis(func1d, axis, arr, …)
ma.apply_along_axis
Apply a function to 1-D slices along the given axis.
ma.apply_over_axes(func, a, axes)
ma.apply_over_axes
Apply a function repeatedly over multiple axes.
ma.arange([start,] stop[, step,][, dtype, like])
ma.arange
Return evenly spaced values within a given interval.
ma.choose(indices, choices[, out, mode])
ma.choose
Use an index array to construct a new array from a set of choices.
ma.ediff1d(arr[, to_end, to_begin])
ma.ediff1d
Compute the differences between consecutive elements of an array.
ma.indices(dimensions[, dtype, sparse])
ma.indices
Return an array representing the indices of a grid.
ma.where(condition[, x, y])
ma.where
Return a masked array with elements from x or y, depending on condition.