numpy.
argmin
Returns the indices of the minimum values along an axis.
Input array.
By default, the index is into the flattened array, otherwise along the specified axis.
If provided, the result will be inserted into this array. It should be of the appropriate shape and dtype.
Array of indices into the array. It has the same shape as a.shape with the dimension along axis removed.
See also
ndarray.argmin
argmax
amin
The minimum value along a given axis.
unravel_index
Convert a flat index into an index tuple.
take_along_axis
Apply np.expand_dims(index_array, axis) from argmin to an array as if by calling min.
np.expand_dims(index_array, axis)
Notes
In case of multiple occurrences of the minimum values, the indices corresponding to the first occurrence are returned.
Examples
>>> a = np.arange(6).reshape(2,3) + 10 >>> a array([[10, 11, 12], [13, 14, 15]]) >>> np.argmin(a) 0 >>> np.argmin(a, axis=0) array([0, 0, 0]) >>> np.argmin(a, axis=1) array([0, 0])
Indices of the minimum elements of a N-dimensional array:
>>> ind = np.unravel_index(np.argmin(a, axis=None), a.shape) >>> ind (0, 0) >>> a[ind] 10
>>> b = np.arange(6) + 10 >>> b[4] = 10 >>> b array([10, 11, 12, 13, 10, 15]) >>> np.argmin(b) # Only the first occurrence is returned. 0
>>> x = np.array([[4,2,3], [1,0,3]]) >>> index_array = np.argmin(x, axis=-1) >>> # Same as np.min(x, axis=-1, keepdims=True) >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1) array([[2], [0]]) >>> # Same as np.max(x, axis=-1) >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1).squeeze(axis=-1) array([2, 0])