numpy.fft.fft¶

fft.
fft
(a, n=None, axis=1, norm=None)[source]¶ Compute the onedimensional discrete Fourier Transform.
This function computes the onedimensional npoint discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform (FFT) algorithm [CT].
 Parameters
 aarray_like
Input array, can be complex.
 nint, optional
Length of the transformed axis of the output. If n is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If n is not given, the length of the input along the axis specified by axis is used.
 axisint, optional
Axis over which to compute the FFT. If not given, the last axis is used.
 norm{“backward”, “ortho”, “forward”}, optional
New in version 1.10.0.
Normalization mode (see
numpy.fft
). Default is “backward”. Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor.New in version 1.20.0: The “backward”, “forward” values were added.
 Returns
 outcomplex ndarray
The truncated or zeropadded input, transformed along the axis indicated by axis, or the last one if axis is not specified.
 Raises
 IndexError
if axes is larger than the last axis of a.
See also
Notes
FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform (DFT) can be calculated efficiently, by using symmetries in the calculated terms. The symmetry is highest when n is a power of 2, and the transform is therefore most efficient for these sizes.
The DFT is defined, with the conventions used in this implementation, in the documentation for the
numpy.fft
module.References
 CT
Cooley, James W., and John W. Tukey, 1965, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19: 297301.
Examples
>>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8)) array([2.33486982e16+1.14423775e17j, 8.00000000e+001.25557246e15j, 2.33486982e16+2.33486982e16j, 0.00000000e+00+1.22464680e16j, 1.14423775e17+2.33486982e16j, 0.00000000e+00+5.20784380e16j, 1.14423775e17+1.14423775e17j, 0.00000000e+00+1.22464680e16j])
In this example, real input has an FFT which is Hermitian, i.e., symmetric in the real part and antisymmetric in the imaginary part, as described in the
numpy.fft
documentation:>>> import matplotlib.pyplot as plt >>> t = np.arange(256) >>> sp = np.fft.fft(np.sin(t)) >>> freq = np.fft.fftfreq(t.shape[1]) >>> plt.plot(freq, sp.real, freq, sp.imag) [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>] >>> plt.show()