numpy.
matmul
Matrix product of two arrays.
Input arrays, scalars not allowed.
A location into which the result is stored. If provided, it must have a shape that matches the signature (n,k),(k,m)->(n,m). If not provided or None, a freshly-allocated array is returned.
For other keyword-only arguments, see the ufunc docs.
New in version 1.16: Now handles ufunc kwargs
The matrix product of the inputs. This is a scalar only when both x1, x2 are 1-d vectors.
If the last dimension of x1 is not the same size as the second-to-last dimension of x2.
If a scalar value is passed in.
See also
vdot
Complex-conjugating dot product.
tensordot
Sum products over arbitrary axes.
einsum
Einstein summation convention.
dot
alternative matrix product with different broadcasting rules.
Notes
The behavior depends on the arguments in the following way.
If both arguments are 2-D they are multiplied like conventional matrices.
If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and broadcast accordingly.
If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed.
If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed.
matmul differs from dot in two important ways:
Multiplication by scalars is not allowed, use * instead.
*
Stacks of matrices are broadcast together as if the matrices were elements, respecting the signature (n,k),(k,m)->(n,m):
(n,k),(k,m)->(n,m)
>>> a = np.ones([9, 5, 7, 4]) >>> c = np.ones([9, 5, 4, 3]) >>> np.dot(a, c).shape (9, 5, 7, 9, 5, 3) >>> np.matmul(a, c).shape (9, 5, 7, 3) >>> # n is 7, k is 4, m is 3
The matmul function implements the semantics of the @ operator introduced in Python 3.5 following PEP465.
Examples
For 2-D arrays it is the matrix product:
>>> a = np.array([[1, 0], ... [0, 1]]) >>> b = np.array([[4, 1], ... [2, 2]]) >>> np.matmul(a, b) array([[4, 1], [2, 2]])
For 2-D mixed with 1-D, the result is the usual.
>>> a = np.array([[1, 0], ... [0, 1]]) >>> b = np.array([1, 2]) >>> np.matmul(a, b) array([1, 2]) >>> np.matmul(b, a) array([1, 2])
Broadcasting is conventional for stacks of arrays
>>> a = np.arange(2 * 2 * 4).reshape((2, 2, 4)) >>> b = np.arange(2 * 2 * 4).reshape((2, 4, 2)) >>> np.matmul(a,b).shape (2, 2, 2) >>> np.matmul(a, b)[0, 1, 1] 98 >>> sum(a[0, 1, :] * b[0 , :, 1]) 98
Vector, vector returns the scalar inner product, but neither argument is complex-conjugated:
>>> np.matmul([2j, 3j], [2j, 3j]) (-13+0j)
Scalar multiplication raises an error.
>>> np.matmul([1,2], 3) Traceback (most recent call last): ... ValueError: matmul: Input operand 1 does not have enough dimensions ...
The @ operator can be used as a shorthand for np.matmul on ndarrays.
@
np.matmul
>>> x1 = np.array([2j, 3j]) >>> x2 = np.array([2j, 3j]) >>> x1 @ x2 (-13+0j)
New in version 1.10.0.