numpy.
zeros
Return a new array of given shape and type, filled with zeros.
Shape of the new array, e.g., (2, 3) or 2.
(2, 3)
2
The desired data-type for the array, e.g., numpy.int8. Default is numpy.float64.
numpy.int8
numpy.float64
Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory.
Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as like supports the __array_function__ protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.
like
__array_function__
Note
The like keyword is an experimental feature pending on acceptance of NEP 35.
New in version 1.20.0.
Array of zeros with the given shape, dtype, and order.
See also
zeros_like
Return an array of zeros with shape and type of input.
empty
Return a new uninitialized array.
ones
Return a new array setting values to one.
full
Return a new array of given shape filled with value.
Examples
>>> np.zeros(5) array([ 0., 0., 0., 0., 0.])
>>> np.zeros((5,), dtype=int) array([0, 0, 0, 0, 0])
>>> np.zeros((2, 1)) array([[ 0.], [ 0.]])
>>> s = (2,2) >>> np.zeros(s) array([[ 0., 0.], [ 0., 0.]])
>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype array([(0, 0), (0, 0)], dtype=[('x', '<i4'), ('y', '<i4')])