ma.
allclose
Returns True if two arrays are element-wise equal within a tolerance.
This function is equivalent to allclose except that masked values are treated as equal (default) or unequal, depending on the masked_equal argument.
masked_equal
Input arrays to compare.
Whether masked values in a and b are considered equal (True) or not (False). They are considered equal by default.
Relative tolerance. The relative difference is equal to rtol * b. Default is 1e-5.
rtol * b
Absolute tolerance. The absolute difference is equal to atol. Default is 1e-8.
Returns True if the two arrays are equal within the given tolerance, False otherwise. If either array contains NaN, then False is returned.
See also
all
any
numpy.allclose
the non-masked allclose.
Notes
If the following equation is element-wise True, then allclose returns True:
absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`))
Return True if all elements of a and b are equal subject to given tolerances.
Examples
>>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1]) >>> a masked_array(data=[10000000000.0, 1e-07, --], mask=[False, False, True], fill_value=1e+20) >>> b = np.ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1]) >>> np.ma.allclose(a, b) False
>>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) >>> b = np.ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1]) >>> np.ma.allclose(a, b) True >>> np.ma.allclose(a, b, masked_equal=False) False
Masked values are not compared directly.
>>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) >>> b = np.ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1]) >>> np.ma.allclose(a, b) True >>> np.ma.allclose(a, b, masked_equal=False) False