numpy.linalg.eigvals#
- linalg.eigvals(a)[source]#
Compute the eigenvalues of a general matrix.
Main difference between
eigvalsandeig: the eigenvectors aren’t returned.- Parameters
- a(…, M, M) array_like
A complex- or real-valued matrix whose eigenvalues will be computed.
- Returns
- w(…, M,) ndarray
The eigenvalues, each repeated according to its multiplicity. They are not necessarily ordered, nor are they necessarily real for real matrices.
- Raises
- LinAlgError
If the eigenvalue computation does not converge.
See also
eigeigenvalues and right eigenvectors of general arrays
eigvalsheigenvalues of real symmetric or complex Hermitian (conjugate symmetric) arrays.
eigheigenvalues and eigenvectors of real symmetric or complex Hermitian (conjugate symmetric) arrays.
scipy.linalg.eigvalsSimilar function in SciPy.
Notes
New in version 1.8.0.
Broadcasting rules apply, see the
numpy.linalgdocumentation for details.This is implemented using the
_geevLAPACK routines which compute the eigenvalues and eigenvectors of general square arrays.Examples
Illustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying a matrix on the left by an orthogonal matrix, Q, and on the right by Q.T (the transpose of Q), preserves the eigenvalues of the “middle” matrix. In other words, if Q is orthogonal, then
Q * A * Q.Thas the same eigenvalues asA:>>> from numpy import linalg as LA >>> x = np.random.random() >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]]) >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :]) (1.0, 1.0, 0.0)
Now multiply a diagonal matrix by
Qon one side and byQ.Ton the other:>>> D = np.diag((-1,1)) >>> LA.eigvals(D) array([-1., 1.]) >>> A = np.dot(Q, D) >>> A = np.dot(A, Q.T) >>> LA.eigvals(A) array([ 1., -1.]) # random