numpy.ma.mask_cols#
- ma.mask_cols(a, axis=<no value>)[source]#
Mask columns of a 2D array that contain masked values.
This function is a shortcut to
mask_rowcols
with axis equal to 1.See also
mask_rowcols
Mask rows and/or columns of a 2D array.
masked_where
Mask where a condition is met.
Examples
>>> import numpy.ma as ma >>> a = np.zeros((3, 3), dtype=int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = ma.masked_equal(a, 1) >>> a masked_array( data=[[0, 0, 0], [0, --, 0], [0, 0, 0]], mask=[[False, False, False], [False, True, False], [False, False, False]], fill_value=1) >>> ma.mask_cols(a) masked_array( data=[[0, --, 0], [0, --, 0], [0, --, 0]], mask=[[False, True, False], [False, True, False], [False, True, False]], fill_value=1)