numpy.testing.assert_allclose#
- testing.assert_allclose(actual, desired, rtol=1e-07, atol=0, equal_nan=True, err_msg='', verbose=True)[source]#
Raises an AssertionError if two objects are not equal up to desired tolerance.
Given two array_like objects, check that their shapes and all elements are equal (but see the Notes for the special handling of a scalar). An exception is raised if the shapes mismatch or any values conflict. In contrast to the standard usage in numpy, NaNs are compared like numbers, no assertion is raised if both objects have NaNs in the same positions.
The test is equivalent to
allclose(actual, desired, rtol, atol)
(note thatallclose
has different default values). It compares the difference between actual and desired toatol + rtol * abs(desired)
.New in version 1.5.0.
- Parameters:
- actualarray_like
Array obtained.
- desiredarray_like
Array desired.
- rtolfloat, optional
Relative tolerance.
- atolfloat, optional
Absolute tolerance.
- equal_nanbool, optional.
If True, NaNs will compare equal.
- err_msgstr, optional
The error message to be printed in case of failure.
- verbosebool, optional
If True, the conflicting values are appended to the error message.
- Raises:
- AssertionError
If actual and desired are not equal up to specified precision.
Notes
When one of actual and desired is a scalar and the other is array_like, the function checks that each element of the array_like object is equal to the scalar.
Examples
>>> x = [1e-5, 1e-3, 1e-1] >>> y = np.arccos(np.cos(x)) >>> np.testing.assert_allclose(x, y, rtol=1e-5, atol=0)