numpy.asfortranarray#
- numpy.asfortranarray(a, dtype=None, *, like=None)#
Return an array (ndim >= 1) laid out in Fortran order in memory.
- Parameters:
- aarray_like
Input array.
- dtypestr or dtype object, optional
By default, the data-type is inferred from the input data.
- likearray_like, optional
Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as
likesupports the__array_function__protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.New in version 1.20.0.
- Returns:
- outndarray
The input a in Fortran, or column-major, order.
See also
ascontiguousarrayConvert input to a contiguous (C order) array.
asanyarrayConvert input to an ndarray with either row or column-major memory order.
requireReturn an ndarray that satisfies requirements.
ndarray.flagsInformation about the memory layout of the array.
Examples
Starting with a C-contiguous array:
>>> x = np.ones((2, 3), order='C') >>> x.flags['C_CONTIGUOUS'] True
Calling
asfortranarraymakes a Fortran-contiguous copy:>>> y = np.asfortranarray(x) >>> y.flags['F_CONTIGUOUS'] True >>> np.may_share_memory(x, y) False
Now, starting with a Fortran-contiguous array:
>>> x = np.ones((2, 3), order='F') >>> x.flags['F_CONTIGUOUS'] True
Then, calling
asfortranarrayreturns the same object:>>> y = np.asfortranarray(x) >>> x is y True
Note: This function returns an array with at least one-dimension (1-d) so it will not preserve 0-d arrays.