How to index ndarrays#

This page tackles common examples. For an in-depth look into indexing, refer to Indexing on ndarrays.

Access specific/arbitrary rows and columns#

Use Basic indexing features like Slicing and striding, and Dimensional indexing tools.

>>> a = np.arange(30).reshape(2, 3, 5)
>>> a
array([[[ 0,  1,  2,  3,  4],
        [ 5,  6,  7,  8,  9],
        [10, 11, 12, 13, 14]],

        [[15, 16, 17, 18, 19],
        [20, 21, 22, 23, 24],
        [25, 26, 27, 28, 29]]])
>>> a[0, 2, :]
array([10, 11, 12, 13, 14])
>>> a[0, :, 3]
array([ 3,  8, 13])

Note that the output from indexing operations can have different shape from the original object. To preserve the original dimensions after indexing, you can use newaxis. To use other such tools, refer to Dimensional indexing tools.

>>> a[0, :, 3].shape
(3,)
>>> a[0, :, 3, np.newaxis].shape
(3, 1)
>>> a[0, :, 3, np.newaxis, np.newaxis].shape
(3, 1, 1)

Variables can also be used to index:

>>> y = 0
>>> a[y, :, y+3]
array([ 3,  8, 13])

Refer to Dealing with variable numbers of indices within programs to see how to use slice and Ellipsis in your index variables.

Index columns#

To index columns, you have to index the last axis. Use Dimensional indexing tools to get the desired number of dimensions:

>>> a = np.arange(24).reshape(2, 3, 4)
>>> a
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],

       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])
>>> a[..., 3]
array([[ 3,  7, 11],
       [15, 19, 23]])

To index specific elements in each column, make use of Advanced indexing as below:

>>> arr = np.arange(3*4).reshape(3, 4)
>>> arr
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> column_indices = [[1, 3], [0, 2], [2, 2]]
>>> np.arange(arr.shape[0])
array([0, 1, 2])
>>> row_indices = np.arange(arr.shape[0])[:, np.newaxis]
>>> row_indices
array([[0],
       [1],
       [2]])

Use the row_indices and column_indices for advanced indexing:

>>> arr[row_indices, column_indices]
array([[ 1,  3],
       [ 4,  6],
       [10, 10]])

Index along a specific axis#

Use take. See also take_along_axis and put_along_axis.

>>> a = np.arange(30).reshape(2, 3, 5)
>>> a
array([[[ 0,  1,  2,  3,  4],
        [ 5,  6,  7,  8,  9],
        [10, 11, 12, 13, 14]],

        [[15, 16, 17, 18, 19],
        [20, 21, 22, 23, 24],
        [25, 26, 27, 28, 29]]])
>>> np.take(a, [2, 3], axis=2)
array([[[ 2,  3],
        [ 7,  8],
        [12, 13]],

        [[17, 18],
        [22, 23],
        [27, 28]]])
>>> np.take(a, [2], axis=1)
array([[[10, 11, 12, 13, 14]],

        [[25, 26, 27, 28, 29]]])

Create subsets of larger matrices#

Use Slicing and striding to access chunks of a large array:

>>> a = np.arange(100).reshape(10, 10)
>>> a
array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9],
        [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
        [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
        [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
        [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
        [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
        [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
        [70, 71, 72, 73, 74, 75, 76, 77, 78, 79],
        [80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
        [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]])
>>> a[2:5, 2:5]
array([[22, 23, 24],
       [32, 33, 34],
       [42, 43, 44]])
>>> a[2:5, 1:3]
array([[21, 22],
       [31, 32],
       [41, 42]])
>>> a[:5, :5]
array([[ 0,  1,  2,  3,  4],
       [10, 11, 12, 13, 14],
       [20, 21, 22, 23, 24],
       [30, 31, 32, 33, 34],
       [40, 41, 42, 43, 44]])

The same thing can be done with advanced indexing in a slightly more complex way. Remember that advanced indexing creates a copy:

>>> a[np.arange(5)[:, None], np.arange(5)[None, :]]
array([[ 0,  1,  2,  3,  4],
       [10, 11, 12, 13, 14],
       [20, 21, 22, 23, 24],
       [30, 31, 32, 33, 34],
       [40, 41, 42, 43, 44]])

You can also use mgrid to generate indices:

>>> indices = np.mgrid[0:6:2]
>>> indices
array([0, 2, 4])
>>> a[:, indices]
array([[ 0,  2,  4],
       [10, 12, 14],
       [20, 22, 24],
       [30, 32, 34],
       [40, 42, 44],
       [50, 52, 54],
       [60, 62, 64],
       [70, 72, 74],
       [80, 82, 84],
       [90, 92, 94]])

Filter values#

Non-zero elements#

Use nonzero to get a tuple of array indices of non-zero elements corresponding to every dimension:

 >>> z = np.array([[1, 2, 3, 0], [0, 0, 5, 3], [4, 6, 0, 0]])
>>> z
array([[1, 2, 3, 0],
       [0, 0, 5, 3],
       [4, 6, 0, 0]])
>>> np.nonzero(z)
(array([0, 0, 0, 1, 1, 2, 2]), array([0, 1, 2, 2, 3, 0, 1]))

Use flatnonzero to fetch indices of elements that are non-zero in the flattened version of the ndarray:

>>> np.flatnonzero(z)
array([0, 1, 2, 6, 7, 8, 9])

Arbitrary conditions#

Use where to generate indices based on conditions and then use Advanced indexing.

>>> a = np.arange(30).reshape(2, 3, 5)
>>> indices = np.where(a % 2 == 0)
>>> indices
(array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]),
array([0, 0, 0, 1, 1, 2, 2, 2, 0, 0, 1, 1, 1, 2, 2]),
array([0, 2, 4, 1, 3, 0, 2, 4, 1, 3, 0, 2, 4, 1, 3]))
>>> a[indices]
array([ 0,  2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28])

Or, use Boolean array indexing:

>>> a > 14
array([[[False, False, False, False, False],
        [False, False, False, False, False],
        [False, False, False, False, False]],

       [[ True,  True,  True,  True,  True],
        [ True,  True,  True,  True,  True],
        [ True,  True,  True,  True,  True]]])
>>> a[a > 14]
array([15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29])

Replace values after filtering#

Use assignment with filtering to replace desired values:

>>> p = np.arange(-10, 10).reshape(2, 2, 5)
>>> p
array([[[-10,  -9,  -8,  -7,  -6],
        [ -5,  -4,  -3,  -2,  -1]],

       [[  0,   1,   2,   3,   4],
        [  5,   6,   7,   8,   9]]])
>>> q = p < 0
>>> q
array([[[ True,  True,  True,  True,  True],
        [ True,  True,  True,  True,  True]],

       [[False, False, False, False, False],
        [False, False, False, False, False]]])
>>> p[q] = 0
>>> p
array([[[0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0]],

       [[0, 1, 2, 3, 4],
        [5, 6, 7, 8, 9]]])

Fetch indices of max/min values#

Use argmax and argmin:

>>> a = np.arange(30).reshape(2, 3, 5)
>>> np.argmax(a)
29
>>> np.argmin(a)
0

Use the axis keyword to get the indices of maximum and minimum values along a specific axis:

>>> np.argmax(a, axis=0)
array([[1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1],
       [1, 1, 1, 1, 1]])
>>> np.argmax(a, axis=1)
array([[2, 2, 2, 2, 2],
       [2, 2, 2, 2, 2]])
>>> np.argmax(a, axis=2)
array([[4, 4, 4],
       [4, 4, 4]])

>>> np.argmin(a, axis=1)
array([[0, 0, 0, 0, 0],
       [0, 0, 0, 0, 0]])
>>> np.argmin(a, axis=2)
array([[0, 0, 0],
       [0, 0, 0]])

Set keepdims to True to keep the axes which are reduced in the result as dimensions with size one:

>>> np.argmin(a, axis=2, keepdims=True)
array([[[0],
        [0],
        [0]],

       [[0],
        [0],
        [0]]])
>>> np.argmax(a, axis=1, keepdims=True)
array([[[2, 2, 2, 2, 2]],

       [[2, 2, 2, 2, 2]]])

To get the indices of each maximum or minimum value for each (N-1)-dimensional array in an N-dimensional array, use reshape to reshape the array to a 2D array, apply argmax or argmin along axis=1 and use unravel_index to recover the index of the values per slice:

>>> x = np.arange(2*2*3).reshape(2, 2, 3) % 7  # 3D example array
>>> x
array([[[0, 1, 2],
        [3, 4, 5]],

       [[6, 0, 1],
        [2, 3, 4]]])
>>> x_2d = np.reshape(x, (x.shape[0], -1))
>>> indices_2d = np.argmax(x_2d, axis=1)
>>> indices_2d
array([5, 0])
>>> np.unravel_index(indices_2d, x.shape[1:])
(array([1, 0]), array([2, 0]))

The first array returned contains the indices along axis 1 in the original array, the second array contains the indices along axis 2. The highest value in x[0] is therefore x[0, 1, 2].

Index the same ndarray multiple times efficiently#

It must be kept in mind that basic indexing produces views and advanced indexing produces copies, which are computationally less efficient. Hence, you should take care to use basic indexing wherever possible instead of advanced indexing.

Further reading#

Nicolas Rougier’s 100 NumPy exercises provide a good insight into how indexing is combined with other operations. Exercises 6, 8, 10, 15, 16, 19, 20, 45, 59, 64, 65, 70, 71, 72, 76, 80, 81, 84, 87, 90, 93, 94 are specially focused on indexing.