numpy.array_equal#
- numpy.array_equal(a1, a2, equal_nan=False)[source]#
True if two arrays have the same shape and elements, False otherwise.
- Parameters:
- a1, a2array_like
Input arrays.
- equal_nanbool
Whether to compare NaN’s as equal. If the dtype of a1 and a2 is complex, values will be considered equal if either the real or the imaginary component of a given value is
nan
.New in version 1.19.0.
- Returns:
- bbool
Returns True if the arrays are equal.
See also
allclose
Returns True if two arrays are element-wise equal within a tolerance.
array_equiv
Returns True if input arrays are shape consistent and all elements equal.
Examples
>>> np.array_equal([1, 2], [1, 2]) True >>> np.array_equal(np.array([1, 2]), np.array([1, 2])) True >>> np.array_equal([1, 2], [1, 2, 3]) False >>> np.array_equal([1, 2], [1, 4]) False >>> a = np.array([1, np.nan]) >>> np.array_equal(a, a) False >>> np.array_equal(a, a, equal_nan=True) True
When
equal_nan
is True, complex values with nan components are considered equal if either the real or the imaginary components are nan.>>> a = np.array([1 + 1j]) >>> b = a.copy() >>> a.real = np.nan >>> b.imag = np.nan >>> np.array_equal(a, b, equal_nan=True) True