numpy.isscalar#

numpy.isscalar(element)[source]#

Returns True if the type of element is a scalar type.

Parameters:
elementany

Input argument, can be of any type and shape.

Returns:
valbool

True if element is a scalar type, False if it is not.

See also

ndim

Get the number of dimensions of an array

Notes

If you need a stricter way to identify a numerical scalar, use isinstance(x, numbers.Number), as that returns False for most non-numerical elements such as strings.

In most cases np.ndim(x) == 0 should be used instead of this function, as that will also return true for 0d arrays. This is how numpy overloads functions in the style of the dx arguments to gradient and the bins argument to histogram. Some key differences:

x

isscalar(x)

np.ndim(x) == 0

PEP 3141 numeric objects (including builtins)

True

True

builtin string and buffer objects

True

True

other builtin objects, like pathlib.Path, Exception, the result of re.compile

False

True

third-party objects like matplotlib.figure.Figure

False

True

zero-dimensional numpy arrays

False

True

other numpy arrays

False

False

list, tuple, and other sequence objects

False

False

Examples

>>> np.isscalar(3.1)
True
>>> np.isscalar(np.array(3.1))
False
>>> np.isscalar([3.1])
False
>>> np.isscalar(False)
True
>>> np.isscalar('numpy')
True

NumPy supports PEP 3141 numbers:

>>> from fractions import Fraction
>>> np.isscalar(Fraction(5, 17))
True
>>> from numbers import Number
>>> np.isscalar(Number())
True