# numpy.polynomial.hermite_e.hermevander#

polynomial.hermite_e.hermevander(x, deg)[source]#

Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix is defined by

$V[..., i] = He_i(x),$

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the HermiteE polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the array V = hermevander(x, n), then np.dot(V, c) and hermeval(x, c) are the same up to roundoff. This equivalence is useful both for least squares fitting and for the evaluation of a large number of HermiteE series of the same degree and sample points.

Parameters
xarray_like

Array of points. The dtype is converted to float64 or complex128 depending on whether any of the elements are complex. If x is scalar it is converted to a 1-D array.

degint

Degree of the resulting matrix.

Returns
vanderndarray

The pseudo-Vandermonde matrix. The shape of the returned matrix is x.shape + (deg + 1,), where The last index is the degree of the corresponding HermiteE polynomial. The dtype will be the same as the converted x.

Examples

>>> from numpy.polynomial.hermite_e import hermevander
>>> x = np.array([-1, 0, 1])
>>> hermevander(x, 3)
array([[ 1., -1.,  0.,  2.],
[ 1.,  0., -1., -0.],
[ 1.,  1.,  0., -2.]])