numpy.random.randint#
- random.randint(low, high=None, size=None, dtype=int)#
- Return random integers from low (inclusive) to high (exclusive). - Return random integers from the “discrete uniform” distribution of the specified dtype in the “half-open” interval [low, high). If high is None (the default), then results are from [0, low). - Note - New code should use the - integersmethod of a- Generatorinstance instead; please see the Quick start.- Parameters:
- lowint or array-like of ints
- Lowest (signed) integers to be drawn from the distribution (unless - high=None, in which case this parameter is one above the highest such integer).
- highint or array-like of ints, optional
- If provided, one above the largest (signed) integer to be drawn from the distribution (see above for behavior if - high=None). If array-like, must contain integer values
- sizeint or tuple of ints, optional
- Output shape. If the given shape is, e.g., - (m, n, k), then- m * n * ksamples are drawn. Default is None, in which case a single value is returned.
- dtypedtype, optional
- Desired dtype of the result. Byteorder must be native. The default value is long. - Warning - This function defaults to the C-long dtype, which is 32bit on windows and otherwise 64bit on 64bit platforms (and 32bit on 32bit ones). Since NumPy 2.0, NumPy’s default integer is 32bit on 32bit platforms and 64bit on 64bit platforms. Which corresponds to np.intp. (dtype=int is not the same as in most NumPy functions.) 
 
- Returns:
 - See also - random_integers
- similar to - randint, only for the closed interval [low, high], and 1 is the lowest value if high is omitted.
- random.Generator.integers
- which should be used for new code. 
 - Examples - >>> np.random.randint(2, size=10) array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random >>> np.random.randint(1, size=10) array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) - Generate a 2 x 4 array of ints between 0 and 4, inclusive: - >>> np.random.randint(5, size=(2, 4)) array([[4, 0, 2, 1], # random [3, 2, 2, 0]]) - Generate a 1 x 3 array with 3 different upper bounds - >>> np.random.randint(1, [3, 5, 10]) array([2, 2, 9]) # random - Generate a 1 by 3 array with 3 different lower bounds - >>> np.random.randint([1, 5, 7], 10) array([9, 8, 7]) # random - Generate a 2 by 4 array using broadcasting with dtype of uint8 - >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8) array([[ 8, 6, 9, 7], # random [ 1, 16, 9, 12]], dtype=uint8)