Logo image Logo image
  • User Guide
  • API reference
  • Development
  • Release notes
  • Learn
  • Array objects
  • Array API Standard Compatibility
  • Constants
  • Universal functions ( ufunc )
  • Routines
    • Array creation routines
    • Array manipulation routines
    • Binary operations
    • String operations
    • C-Types Foreign Function Interface ( numpy.ctypeslib )
    • Datetime Support Functions
    • Data type routines
    • Optionally SciPy-accelerated routines ( numpy.dual )
    • Mathematical functions with automatic domain
    • Floating point error handling
    • Discrete Fourier Transform ( numpy.fft )
    • Functional programming
    • NumPy-specific help functions
    • Input and output
    • Linear algebra ( numpy.linalg )
    • Logic functions
    • Masked array operations
    • Mathematical functions
    • Matrix library ( numpy.matlib )
    • Miscellaneous routines
    • Padding Arrays
    • Polynomials
    • Random sampling ( numpy.random )
      • Random Generator
      • Legacy Random Generation
      • Bit Generators
      • Upgrading PCG64 with PCG64DXSM
      • Parallel Applications
      • Multithreaded Generation
      • What’s New or Different
      • Comparing Performance
      • C API for random
      • Examples of using Numba, Cython, CFFI
    • Set routines
    • Sorting, searching, and counting
    • Statistics
    • Test Support ( numpy.testing )
    • Window functions
  • Typing ( numpy.typing )
  • Global State
  • Packaging ( numpy.distutils )
  • NumPy Distutils - Users Guide
  • Status of numpy.distutils and migration advice
  • NumPy C-API
  • CPU/SIMD Optimizations
  • NumPy security
  • NumPy and SWIG
On this page
  • random.sample

numpy.random.sample#

random.sample()#

This is an alias of random_sample. See random_sample for the complete documentation.

previous

numpy.random.rayleigh

next

numpy.random.seed

© Copyright 2008-2022, NumPy Developers.

Created using Sphinx 5.3.0.