Search
Searching
- numpy.ndarray.flat
...NumPy reference Array objects The N-dimensional array (ndarray) numpy.ndarray.flat...
- numpy.ndarray.flatten
- numpy.ndarray.flat (Python attribute, in numpy.ndarray.flat)
- Array iterator API
...ay be passed in flags, applying to the whole iterator, are: NPY_ITER_C_INDEX Causes the iterator to track a raveled flat index matching C order. This option cannot be used with NPY_ITER_F_INDEX. NPY_ITER_F_INDEX Causes the iterator...
- Beyond the basics
...er of dimensions, then you can make use of the array iterator. An array iterator object is returned when accessing the .flat attribute of an array. Basic usage is to call PyArray_IterNew ( array ) where array is an ndarray object (or one of...
- Indexing on
ndarrays
...x['a'].shape (2, 2) >>> x['a'].dtype dtype('int32') >>> x['b'].shape (2, 2, 3, 3) >>> x['b'].dtype dtype('float64') Flat iterator indexing x.flat returns an iterator that will iterate over the entire array (in C-contiguous style with th...
- Internal organization of NumPy arrays
...s for ufuncs, there is no large intrinsic advantage to either approach in most cases. On the other hand, use of ndarray.flat with a FORTRAN ordered array will lead to non-optimal memory access as adjacent elements in the flattened array (it...
- NumPy 1.12.0 Release Notes
...y given axis. np.count_nonzero now has an axis parameter, allowing non-zero counts to be generated on more than just a flattened array object. BLIS support in numpy.distutils Building against the BLAS implementation provided by the BLIS...
- NumPy 1.14.0 Release Notes
...ision times the largest of the input array dimensions. A FutureWarning is issued when rcond is not passed explicitly. a.flat.__array__() will return a writeable copy of a when a is non-contiguous. Previously it returned an UPDATEIFCOPY arr...
- NumPy 1.21.1 Release Notes
- NumPy 1.9.0 Release Notes
- NumPy 2.0.0 Release Notes
- NumPy C code explanations
- NumPy quickstart
- numpy.argmax
- numpy.argmin
- numpy.char.chararray.flatten
- numpy.char.chararray.ravel
- numpy.ediff1d
- numpy.flatiter
- numpy.i: a SWIG interface file for NumPy
- numpy.ma.masked_array.flatten
- numpy.ma.MaskedArray.flatten
- numpy.matrix
- numpy.matrix.ravel
- numpy.memmap.flatten
- numpy.memmap.ravel
- numpy.ndarray
- numpy.ndarray.flat
- numpy.ndarray.flatten
- numpy.ndarray.item
- numpy.ndarray.put
- numpy.ndarray.ravel
- numpy.polynomial.chebyshev.chebdomain
- numpy.polynomial.chebyshev.chebone
- numpy.polynomial.chebyshev.chebvander2d
- numpy.polynomial.chebyshev.chebvander3d
- numpy.polynomial.chebyshev.chebx
- numpy.polynomial.chebyshev.chebzero
- numpy.polynomial.hermite.hermdomain
- numpy.polynomial.hermite.hermone
- numpy.polynomial.hermite.hermvander2d
- numpy.polynomial.hermite.hermvander3d
- numpy.polynomial.hermite.hermx
- numpy.polynomial.hermite.hermzero
- numpy.polynomial.hermite_e.hermedomain
- numpy.polynomial.hermite_e.hermeone
- numpy.polynomial.hermite_e.hermevander2d
- numpy.polynomial.hermite_e.hermevander3d
- numpy.polynomial.hermite_e.hermex
- numpy.polynomial.hermite_e.hermezero
- numpy.polynomial.laguerre.lagdomain
- numpy.polynomial.laguerre.lagone
- numpy.polynomial.laguerre.lagvander2d
- numpy.polynomial.laguerre.lagvander3d
- numpy.polynomial.laguerre.lagx
- numpy.polynomial.laguerre.lagzero
- numpy.polynomial.legendre.legdomain
- numpy.polynomial.legendre.legone
- numpy.polynomial.legendre.legvander2d
- numpy.polynomial.legendre.legvander3d
- numpy.polynomial.legendre.legx
- numpy.polynomial.legendre.legzero
- numpy.polynomial.polynomial.polydomain
- numpy.polynomial.polynomial.polyone
- numpy.polynomial.polynomial.polyvander2d