NumPy

Previous topic

numpy.frombuffer

Next topic

numpy.fromfunction

numpy.fromfile

numpy.fromfile(file, dtype=float, count=-1, sep='', offset=0)

Construct an array from data in a text or binary file.

A highly efficient way of reading binary data with a known data-type, as well as parsing simply formatted text files. Data written using the tofile method can be read using this function.

Parameters:
file : file or str or Path

Open file object or filename.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

dtype : data-type

Data type of the returned array. For binary files, it is used to determine the size and byte-order of the items in the file.

count : int

Number of items to read. -1 means all items (i.e., the complete file).

sep : str

Separator between items if file is a text file. Empty (“”) separator means the file should be treated as binary. Spaces (” “) in the separator match zero or more whitespace characters. A separator consisting only of spaces must match at least one whitespace.

offset : int

The offset (in bytes) from the file’s current position. Defaults to 0. Only permitted for binary files.

New in version 1.17.0.

See also

load, save, ndarray.tofile

loadtxt
More flexible way of loading data from a text file.

Notes

Do not rely on the combination of tofile and fromfile for data storage, as the binary files generated are are not platform independent. In particular, no byte-order or data-type information is saved. Data can be stored in the platform independent .npy format using save and load instead.

Examples

Construct an ndarray:

>>> dt = np.dtype([('time', [('min', np.int64), ('sec', np.int64)]),
...                ('temp', float)])
>>> x = np.zeros((1,), dtype=dt)
>>> x['time']['min'] = 10; x['temp'] = 98.25
>>> x
array([((10, 0), 98.25)],
      dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])

Save the raw data to disk:

>>> import tempfile
>>> fname = tempfile.mkstemp()[1]
>>> x.tofile(fname)

Read the raw data from disk:

>>> np.fromfile(fname, dtype=dt)
array([((10, 0), 98.25)],
      dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])

The recommended way to store and load data:

>>> np.save(fname, x)
>>> np.load(fname + '.npy')
array([((10, 0), 98.25)],
      dtype=[('time', [('min', '<i8'), ('sec', '<i8')]), ('temp', '<f8')])