ma.hstack = < object>#

Stack arrays in sequence horizontally (column wise).

This is equivalent to concatenation along the second axis, except for 1-D arrays where it concatenates along the first axis. Rebuilds arrays divided by hsplit.

This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block provide more general stacking and concatenation operations.

tupsequence of ndarrays

The arrays must have the same shape along all but the second axis, except 1-D arrays which can be any length.

dtypestr or dtype

If provided, the destination array will have this dtype. Cannot be provided together with out.

New in version 1.24.

casting{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional

Controls what kind of data casting may occur. Defaults to ‘same_kind’.

New in version 1.24.


The array formed by stacking the given arrays.

See also


Join a sequence of arrays along an existing axis.


Join a sequence of arrays along a new axis.


Assemble an nd-array from nested lists of blocks.


Stack arrays in sequence vertically (row wise).


Stack arrays in sequence depth wise (along third axis).


Stack 1-D arrays as columns into a 2-D array.


Split an array into multiple sub-arrays horizontally (column-wise).


The function is applied to both the _data and the _mask, if any.


>>> a = np.array((1,2,3))
>>> b = np.array((4,5,6))
>>> np.hstack((a,b))
array([1, 2, 3, 4, 5, 6])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[4],[5],[6]])
>>> np.hstack((a,b))
array([[1, 4],
       [2, 5],
       [3, 6]])