numpy.argmax¶
- numpy.argmax(a, axis=None, out=None)[source]¶
Returns the indices of the maximum values along an axis.
- Parameters
- aarray_like
Input array.
- axisint, optional
By default, the index is into the flattened array, otherwise along the specified axis.
- outarray, optional
If provided, the result will be inserted into this array. It should be of the appropriate shape and dtype.
- Returns
- index_arrayndarray of ints
Array of indices into the array. It has the same shape as a.shape with the dimension along axis removed.
See also
ndarray.argmax
,argmin
amax
The maximum value along a given axis.
unravel_index
Convert a flat index into an index tuple.
take_along_axis
Apply
np.expand_dims(index_array, axis)
from argmax to an array as if by calling max.
Notes
In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence are returned.
Examples
>>> a = np.arange(6).reshape(2,3) + 10 >>> a array([[10, 11, 12], [13, 14, 15]]) >>> np.argmax(a) 5 >>> np.argmax(a, axis=0) array([1, 1, 1]) >>> np.argmax(a, axis=1) array([2, 2])
Indexes of the maximal elements of a N-dimensional array:
>>> ind = np.unravel_index(np.argmax(a, axis=None), a.shape) >>> ind (1, 2) >>> a[ind] 15
>>> b = np.arange(6) >>> b[1] = 5 >>> b array([0, 5, 2, 3, 4, 5]) >>> np.argmax(b) # Only the first occurrence is returned. 1
>>> x = np.array([[4,2,3], [1,0,3]]) >>> index_array = np.argmax(x, axis=-1) >>> # Same as np.max(x, axis=-1, keepdims=True) >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1) array([[4], [3]]) >>> # Same as np.max(x, axis=-1) >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1).squeeze(axis=-1) array([4, 3])