logo
  • User Guide
  • API reference
  • Development
  • Array objects
    • The N-dimensional array ( ndarray )
    • Scalars
    • Data type objects ( dtype )
    • Indexing
    • Iterating Over Arrays
    • Standard array subclasses
    • Masked arrays
      • The numpy.ma module
      • Constants of the numpy.ma module
      • Masked array operations
    • The Array Interface
    • Datetimes and Timedeltas
  • Constants
  • Universal functions ( ufunc )
  • Routines
  • Typing ( numpy.typing )
  • Global State
  • Packaging ( numpy.distutils )
  • NumPy Distutils - Users Guide
  • NumPy C-API
  • NumPy internals
  • SIMD Optimizations
  • NumPy and SWIG

Masked arraysΒΆ

Masked arrays are arrays that may have missing or invalid entries. The numpy.ma module provides a nearly work-alike replacement for numpy that supports data arrays with masks.

  • The numpy.ma module
    • Rationale
    • What is a masked array?
    • The numpy.ma module
  • Using numpy.ma
    • Constructing masked arrays
    • Accessing the data
    • Accessing the mask
    • Accessing only the valid entries
    • Modifying the mask
    • Indexing and slicing
    • Operations on masked arrays
  • Examples
    • Data with a given value representing missing data
    • Filling in the missing data
    • Numerical operations
    • Ignoring extreme values
  • Constants of the numpy.ma module
  • The MaskedArray class
    • Attributes and properties of masked arrays
  • MaskedArray methods
    • Conversion
    • Shape manipulation
    • Item selection and manipulation
    • Pickling and copy
    • Calculations
    • Arithmetic and comparison operations
    • Representation
    • Special methods
    • Specific methods
  • Masked array operations
    • Constants
    • Creation
    • Inspecting the array
    • Manipulating a MaskedArray
    • Operations on masks
    • Conversion operations
    • Masked arrays arithmetics
numpy.broadcast.reset The numpy.ma module

© Copyright 2008-2021, The NumPy community.
Last updated on Jun 22, 2021.
Created using Sphinx 4.0.1.