numpy.random.Generator.exponential#
method
- random.Generator.exponential(scale=1.0, size=None)#
Draw samples from an exponential distribution.
Its probability density function is
\[f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),\]for
x > 0
and 0 elsewhere. \(\beta\) is the scale parameter, which is the inverse of the rate parameter \(\lambda = 1/\beta\). The rate parameter is an alternative, widely used parameterization of the exponential distribution [3].The exponential distribution is a continuous analogue of the geometric distribution. It describes many common situations, such as the size of raindrops measured over many rainstorms [1], or the time between page requests to Wikipedia [2].
- Parameters
- scalefloat or array_like of floats
The scale parameter, \(\beta = 1/\lambda\). Must be non-negative.
- sizeint or tuple of ints, optional
Output shape. If the given shape is, e.g.,
(m, n, k)
, thenm * n * k
samples are drawn. If size isNone
(default), a single value is returned ifscale
is a scalar. Otherwise,np.array(scale).size
samples are drawn.
- Returns
- outndarray or scalar
Drawn samples from the parameterized exponential distribution.
References
- 1
Peyton Z. Peebles Jr., “Probability, Random Variables and Random Signal Principles”, 4th ed, 2001, p. 57.
- 2
Wikipedia, “Poisson process”, https://en.wikipedia.org/wiki/Poisson_process
- 3
Wikipedia, “Exponential distribution”, https://en.wikipedia.org/wiki/Exponential_distribution