numpy.linalg.eigvalsh#
- linalg.eigvalsh(a, UPLO='L')[source]#
- Compute the eigenvalues of a complex Hermitian or real symmetric matrix. - Main difference from eigh: the eigenvectors are not computed. - Parameters:
- a(…, M, M) array_like
- A complex- or real-valued matrix whose eigenvalues are to be computed. 
- UPLO{‘L’, ‘U’}, optional
- Specifies whether the calculation is done with the lower triangular part of a (‘L’, default) or the upper triangular part (‘U’). Irrespective of this value only the real parts of the diagonal will be considered in the computation to preserve the notion of a Hermitian matrix. It therefore follows that the imaginary part of the diagonal will always be treated as zero. 
 
- Returns:
- w(…, M,) ndarray
- The eigenvalues in ascending order, each repeated according to its multiplicity. 
 
- Raises:
- LinAlgError
- If the eigenvalue computation does not converge. 
 
 - See also - eigh
- eigenvalues and eigenvectors of real symmetric or complex Hermitian (conjugate symmetric) arrays. 
- eigvals
- eigenvalues of general real or complex arrays. 
- eig
- eigenvalues and right eigenvectors of general real or complex arrays. 
- scipy.linalg.eigvalsh
- Similar function in SciPy. 
 - Notes - Broadcasting rules apply, see the - numpy.linalgdocumentation for details.- The eigenvalues are computed using LAPACK routines - _syevd,- _heevd.- Examples - >>> import numpy as np >>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> LA.eigvalsh(a) array([ 0.17157288, 5.82842712]) # may vary - >>> # demonstrate the treatment of the imaginary part of the diagonal >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]]) >>> a array([[5.+2.j, 9.-2.j], [0.+2.j, 2.-1.j]]) >>> # with UPLO='L' this is numerically equivalent to using LA.eigvals() >>> # with: >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]]) >>> b array([[5.+0.j, 0.-2.j], [0.+2.j, 2.+0.j]]) >>> wa = LA.eigvalsh(a) >>> wb = LA.eigvals(b) >>> wa array([1., 6.]) >>> wb array([6.+0.j, 1.+0.j])