numpy.linalg.matrix_norm#
- linalg.matrix_norm(x, /, *, keepdims=False, ord='fro')[source]#
- Computes the matrix norm of a matrix (or a stack of matrices) - x.- This function is Array API compatible. - Parameters:
- xarray_like
- Input array having shape (…, M, N) and whose two innermost dimensions form - MxNmatrices.
- keepdimsbool, optional
- If this is set to True, the axes which are normed over are left in the result as dimensions with size one. Default: False. 
- ord{1, -1, 2, -2, inf, -inf, ‘fro’, ‘nuc’}, optional
- The order of the norm. For details see the table under - Notesin- numpy.linalg.norm.
 
 - See also - numpy.linalg.norm
- Generic norm function 
 - Examples - >>> from numpy import linalg as LA >>> a = np.arange(9) - 4 >>> a array([-4, -3, -2, ..., 2, 3, 4]) >>> b = a.reshape((3, 3)) >>> b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]]) - >>> LA.matrix_norm(b) 7.745966692414834 >>> LA.matrix_norm(b, ord='fro') 7.745966692414834 >>> LA.matrix_norm(b, ord=np.inf) 9.0 >>> LA.matrix_norm(b, ord=-np.inf) 2.0 - >>> LA.matrix_norm(b, ord=1) 7.0 >>> LA.matrix_norm(b, ord=-1) 6.0 >>> LA.matrix_norm(b, ord=2) 7.3484692283495345 >>> LA.matrix_norm(b, ord=-2) 1.8570331885190563e-016 # may vary