numpy.linalg.cholesky#
- linalg.cholesky(a, /, *, upper=False)[source]#
- Cholesky decomposition. - Return the lower or upper Cholesky decomposition, - L * L.Hor- U.H * U, of the square matrix- a, where- Lis lower-triangular,- Uis upper-triangular, and- .His the conjugate transpose operator (which is the ordinary transpose if- ais real-valued).- amust be Hermitian (symmetric if real-valued) and positive-definite. No checking is performed to verify whether- ais Hermitian or not. In addition, only the lower or upper-triangular and diagonal elements of- aare used. Only- Lor- Uis actually returned.- Parameters:
- a(…, M, M) array_like
- Hermitian (symmetric if all elements are real), positive-definite input matrix. 
- upperbool
- If - True, the result must be the upper-triangular Cholesky factor. If- False, the result must be the lower-triangular Cholesky factor. Default:- False.
 
- Returns:
- L(…, M, M) array_like
- Lower or upper-triangular Cholesky factor of a. Returns a matrix object if a is a matrix object. 
 
- Raises:
- LinAlgError
- If the decomposition fails, for example, if a is not positive-definite. 
 
 - See also - scipy.linalg.cholesky
- Similar function in SciPy. 
- scipy.linalg.cholesky_banded
- Cholesky decompose a banded Hermitian positive-definite matrix. 
- scipy.linalg.cho_factor
- Cholesky decomposition of a matrix, to use in - scipy.linalg.cho_solve.
 - Notes - Broadcasting rules apply, see the - numpy.linalgdocumentation for details.- The Cholesky decomposition is often used as a fast way of solving \[A \mathbf{x} = \mathbf{b}\]- (when A is both Hermitian/symmetric and positive-definite). - First, we solve for \(\mathbf{y}\) in \[L \mathbf{y} = \mathbf{b},\]- and then for \(\mathbf{x}\) in \[L^{H} \mathbf{x} = \mathbf{y}.\]- Examples - >>> import numpy as np >>> A = np.array([[1,-2j],[2j,5]]) >>> A array([[ 1.+0.j, -0.-2.j], [ 0.+2.j, 5.+0.j]]) >>> L = np.linalg.cholesky(A) >>> L array([[1.+0.j, 0.+0.j], [0.+2.j, 1.+0.j]]) >>> np.dot(L, L.T.conj()) # verify that L * L.H = A array([[1.+0.j, 0.-2.j], [0.+2.j, 5.+0.j]]) >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like? >>> np.linalg.cholesky(A) # an ndarray object is returned array([[1.+0.j, 0.+0.j], [0.+2.j, 1.+0.j]]) >>> # But a matrix object is returned if A is a matrix object >>> np.linalg.cholesky(np.matrix(A)) matrix([[ 1.+0.j, 0.+0.j], [ 0.+2.j, 1.+0.j]]) >>> # The upper-triangular Cholesky factor can also be obtained. >>> np.linalg.cholesky(A, upper=True) array([[1.-0.j, 0.-2.j], [0.-0.j, 1.-0.j]])