numpy.random.Generator.standard_normal#
method
- random.Generator.standard_normal(size=None, dtype=np.float64, out=None)#
- Draw samples from a standard Normal distribution (mean=0, stdev=1). - Parameters:
- sizeint or tuple of ints, optional
- Output shape. If the given shape is, e.g., - (m, n, k), then- m * n * ksamples are drawn. Default is None, in which case a single value is returned.
- dtypedtype, optional
- Desired dtype of the result, only - float64and- float32are supported. Byteorder must be native. The default value is np.float64.
- outndarray, optional
- Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values. 
 
- Returns:
- outfloat or ndarray
- A floating-point array of shape - sizeof drawn samples, or a single sample if- sizewas not specified.
 
 - See also - normal
- Equivalent function with additional - locand- scalearguments for setting the mean and standard deviation.
 - Notes - For random samples from the normal distribution with mean - muand standard deviation- sigma, use one of:- mu + sigma * rng.standard_normal(size=...) rng.normal(mu, sigma, size=...) - Examples - >>> rng = np.random.default_rng() >>> rng.standard_normal() 2.1923875335537315 # random - >>> s = rng.standard_normal(8000) >>> s array([ 0.6888893 , 0.78096262, -0.89086505, ..., 0.49876311, # random -0.38672696, -0.4685006 ]) # random >>> s.shape (8000,) >>> s = rng.standard_normal(size=(3, 4, 2)) >>> s.shape (3, 4, 2) - Two-by-four array of samples from the normal distribution with mean 3 and standard deviation 2.5: - >>> 3 + 2.5 * rng.standard_normal(size=(2, 4)) array([[-4.49401501, 4.00950034, -1.81814867, 7.29718677], # random [ 0.39924804, 4.68456316, 4.99394529, 4.84057254]]) # random