numpy.quantile#
- numpy.quantile(a, q, axis=None, out=None, overwrite_input=False, method='linear', keepdims=False, *, interpolation=None)[source]#
Compute the q-th quantile of the data along the specified axis.
New in version 1.15.0.
- Parameters:
- aarray_like of real numbers
Input array or object that can be converted to an array.
- qarray_like of float
Quantile or sequence of quantiles to compute, which must be between 0 and 1 inclusive.
- axis{int, tuple of int, None}, optional
Axis or axes along which the quantiles are computed. The default is to compute the quantile(s) along a flattened version of the array.
- outndarray, optional
Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary.
- overwrite_inputbool, optional
If True, then allow the input array a to be modified by intermediate calculations, to save memory. In this case, the contents of the input a after this function completes is undefined.
- methodstr, optional
This parameter specifies the method to use for estimating the quantile. There are many different methods, some unique to NumPy. See the notes for explanation. The options sorted by their R type as summarized in the H&F paper [1] are:
‘inverted_cdf’
‘averaged_inverted_cdf’
‘closest_observation’
‘interpolated_inverted_cdf’
‘hazen’
‘weibull’
‘linear’ (default)
‘median_unbiased’
‘normal_unbiased’
The first three methods are discontinuous. NumPy further defines the following discontinuous variations of the default ‘linear’ (7.) option:
‘lower’
‘higher’,
‘midpoint’
‘nearest’
Changed in version 1.22.0: This argument was previously called “interpolation” and only offered the “linear” default and last four options.
- keepdimsbool, optional
If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array a.
- interpolationstr, optional
Deprecated name for the method keyword argument.
Deprecated since version 1.22.0.
- Returns:
- quantilescalar or ndarray
If q is a single quantile and axis=None, then the result is a scalar. If multiple quantiles are given, first axis of the result corresponds to the quantiles. The other axes are the axes that remain after the reduction of a. If the input contains integers or floats smaller than
float64
, the output data-type isfloat64
. Otherwise, the output data-type is the same as that of the input. If out is specified, that array is returned instead.
See also
mean
percentile
equivalent to quantile, but with q in the range [0, 100].
median
equivalent to
quantile(..., 0.5)
nanquantile
Notes
Given a vector
V
of lengthn
, the q-th quantile ofV
is the valueq
of the way from the minimum to the maximum in a sorted copy ofV
. The values and distances of the two nearest neighbors as well as the method parameter will determine the quantile if the normalized ranking does not match the location ofq
exactly. This function is the same as the median ifq=0.5
, the same as the minimum ifq=0.0
and the same as the maximum ifq=1.0
.The optional method parameter specifies the method to use when the desired quantile lies between two indexes
i
andj = i + 1
. In that case, we first determinei + g
, a virtual index that lies betweeni
andj
, wherei
is the floor andg
is the fractional part of the index. The final result is, then, an interpolation ofa[i]
anda[j]
based ong
. During the computation ofg
,i
andj
are modified using correction constantsalpha
andbeta
whose choices depend on themethod
used. Finally, note that since Python uses 0-based indexing, the code subtracts another 1 from the index internally.The following formula determines the virtual index
i + g
, the location of the quantile in the sorted sample:\[i + g = q * ( n - alpha - beta + 1 ) + alpha\]The different methods then work as follows
- inverted_cdf:
method 1 of H&F [1]. This method gives discontinuous results:
if g > 0 ; then take j
if g = 0 ; then take i
- averaged_inverted_cdf:
method 2 of H&F [1]. This method gives discontinuous results:
if g > 0 ; then take j
if g = 0 ; then average between bounds
- closest_observation:
method 3 of H&F [1]. This method gives discontinuous results:
if g > 0 ; then take j
if g = 0 and index is odd ; then take j
if g = 0 and index is even ; then take i
- interpolated_inverted_cdf:
method 4 of H&F [1]. This method gives continuous results using:
alpha = 0
beta = 1
- hazen:
method 5 of H&F [1]. This method gives continuous results using:
alpha = 1/2
beta = 1/2
- weibull:
method 6 of H&F [1]. This method gives continuous results using:
alpha = 0
beta = 0
- linear:
method 7 of H&F [1]. This method gives continuous results using:
alpha = 1
beta = 1
- median_unbiased:
method 8 of H&F [1]. This method is probably the best method if the sample distribution function is unknown (see reference). This method gives continuous results using:
alpha = 1/3
beta = 1/3
- normal_unbiased:
method 9 of H&F [1]. This method is probably the best method if the sample distribution function is known to be normal. This method gives continuous results using:
alpha = 3/8
beta = 3/8
- lower:
NumPy method kept for backwards compatibility. Takes
i
as the interpolation point.- higher:
NumPy method kept for backwards compatibility. Takes
j
as the interpolation point.- nearest:
NumPy method kept for backwards compatibility. Takes
i
orj
, whichever is nearest.- midpoint:
NumPy method kept for backwards compatibility. Uses
(i + j) / 2
.
References
Examples
>>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.quantile(a, 0.5) 3.5 >>> np.quantile(a, 0.5, axis=0) array([6.5, 4.5, 2.5]) >>> np.quantile(a, 0.5, axis=1) array([7., 2.]) >>> np.quantile(a, 0.5, axis=1, keepdims=True) array([[7.], [2.]]) >>> m = np.quantile(a, 0.5, axis=0) >>> out = np.zeros_like(m) >>> np.quantile(a, 0.5, axis=0, out=out) array([6.5, 4.5, 2.5]) >>> m array([6.5, 4.5, 2.5]) >>> b = a.copy() >>> np.quantile(b, 0.5, axis=1, overwrite_input=True) array([7., 2.]) >>> assert not np.all(a == b)
See also
numpy.percentile
for a visualization of most methods.