numpy.ma.fromflex#
- ma.fromflex(fxarray)[source]#
Build a masked array from a suitable flexible-type array.
The input array has to have a data-type with
_data
and_mask
fields. This type of array is output byMaskedArray.toflex
.- Parameters:
- fxarrayndarray
The structured input array, containing
_data
and_mask
fields. If present, other fields are discarded.
- Returns:
- resultMaskedArray
The constructed masked array.
See also
MaskedArray.toflex
Build a flexible-type array from a masked array.
Examples
>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[0] + [1, 0] * 4) >>> rec = x.toflex() >>> rec array([[(0, False), (1, True), (2, False)], [(3, True), (4, False), (5, True)], [(6, False), (7, True), (8, False)]], dtype=[('_data', '<i8'), ('_mask', '?')]) >>> x2 = np.ma.fromflex(rec) >>> x2 masked_array( data=[[0, --, 2], [--, 4, --], [6, --, 8]], mask=[[False, True, False], [ True, False, True], [False, True, False]], fill_value=999999)
Extra fields can be present in the structured array but are discarded:
>>> dt = [('_data', '<i4'), ('_mask', '|b1'), ('field3', '<f4')] >>> rec2 = np.zeros((2, 2), dtype=dt) >>> rec2 array([[(0, False, 0.), (0, False, 0.)], [(0, False, 0.), (0, False, 0.)]], dtype=[('_data', '<i4'), ('_mask', '?'), ('field3', '<f4')]) >>> y = np.ma.fromflex(rec2) >>> y masked_array( data=[[0, 0], [0, 0]], mask=[[False, False], [False, False]], fill_value=np.int64(999999), dtype=int32)