numpy.ma.mask_rows#
- ma.mask_rows(a, axis=<no value>)[source]#
Mask rows of a 2D array that contain masked values.
This function is a shortcut to
mask_rowcols
with axis equal to 0.See also
mask_rowcols
Mask rows and/or columns of a 2D array.
masked_where
Mask where a condition is met.
Examples
>>> a = np.zeros((3, 3), dtype=int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = np.ma.masked_equal(a, 1) >>> a masked_array( data=[[0, 0, 0], [0, --, 0], [0, 0, 0]], mask=[[False, False, False], [False, True, False], [False, False, False]], fill_value=1)
>>> np.ma.mask_rows(a) masked_array( data=[[0, 0, 0], [--, --, --], [0, 0, 0]], mask=[[False, False, False], [ True, True, True], [False, False, False]], fill_value=1)