numpy.ma.masked_invalid#
- ma.masked_invalid(a, copy=True)[source]#
Mask an array where invalid values occur (NaNs or infs).
This function is a shortcut to
masked_where
, with condition = ~(np.isfinite(a)). Any pre-existing mask is conserved. Only applies to arrays with a dtype where NaNs or infs make sense (i.e. floating point types), but accepts any array_like object.See also
masked_where
Mask where a condition is met.
Examples
>>> import numpy.ma as ma >>> a = np.arange(5, dtype=float) >>> a[2] = np.nan >>> a[3] = np.inf >>> a array([ 0., 1., nan, inf, 4.]) >>> ma.masked_invalid(a) masked_array(data=[0.0, 1.0, --, --, 4.0], mask=[False, False, True, True, False], fill_value=1e+20)