numpy.ma.fromfunction#
- ma.fromfunction(function, shape, **dtype) = <numpy.ma.core._convert2ma object>#
Construct an array by executing a function over each coordinate.
The resulting array therefore has a value
fn(x, y, z)at coordinate(x, y, z).- Parameters:
- functioncallable
The function is called with N parameters, where N is the rank of
shape. Each parameter represents the coordinates of the array varying along a specific axis. For example, ifshapewere(2, 2), then the parameters would bearray([[0, 0], [1, 1]])andarray([[0, 1], [0, 1]])- shape(N,) tuple of ints
Shape of the output array, which also determines the shape of the coordinate arrays passed to function.
- dtypedata-type, optional
Data-type of the coordinate arrays passed to function. By default,
dtypeis float.- likearray_like, optional
Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as
likesupports the__array_function__protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.New in version 1.20.0.
- Returns:
- fromfunction: MaskedArray
The result of the call to function is passed back directly. Therefore the shape of
fromfunctionis completely determined by function. If function returns a scalar value, the shape offromfunctionwould not match theshapeparameter.
Notes
Keywords other than
dtypeand like are passed to function.Examples
>>> np.fromfunction(lambda i, j: i, (2, 2), dtype=float) array([[0., 0.], [1., 1.]])
>>> np.fromfunction(lambda i, j: j, (2, 2), dtype=float) array([[0., 1.], [0., 1.]])
>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int) array([[ True, False, False], [False, True, False], [False, False, True]])
>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int) array([[0, 1, 2], [1, 2, 3], [2, 3, 4]])