numpy.random.Generator.random#
method
- random.Generator.random(size=None, dtype=np.float64, out=None)#
Return random floats in the half-open interval [0.0, 1.0).
Results are from the “continuous uniform” distribution over the stated interval. To sample \(Unif[a, b), b > a\) use
uniform
or multiply the output ofrandom
by(b - a)
and adda
:(b - a) * random() + a
- Parameters:
- sizeint or tuple of ints, optional
Output shape. If the given shape is, e.g.,
(m, n, k)
, thenm * n * k
samples are drawn. Default is None, in which case a single value is returned.- dtypedtype, optional
Desired dtype of the result, only
float64
andfloat32
are supported. Byteorder must be native. The default value is np.float64.- outndarray, optional
Alternative output array in which to place the result. If size is not None, it must have the same shape as the provided size and must match the type of the output values.
- Returns:
- outfloat or ndarray of floats
Array of random floats of shape
size
(unlesssize=None
, in which case a single float is returned).
See also
uniform
Draw samples from the parameterized uniform distribution.
Examples
>>> rng = np.random.default_rng() >>> rng.random() 0.47108547995356098 # random >>> type(rng.random()) <class 'float'> >>> rng.random((5,)) array([ 0.30220482, 0.86820401, 0.1654503 , 0.11659149, 0.54323428]) # random
Three-by-two array of random numbers from [-5, 0):
>>> 5 * rng.random((3, 2)) - 5 array([[-3.99149989, -0.52338984], # random [-2.99091858, -0.79479508], [-1.23204345, -1.75224494]])