numpy.linalg.eigvals#
- linalg.eigvals(a)[source]#
- Compute the eigenvalues of a general matrix. - Main difference between - eigvalsand- eig: the eigenvectors aren’t returned.- Parameters:
- a(…, M, M) array_like
- A complex- or real-valued matrix whose eigenvalues will be computed. 
 
- Returns:
- w(…, M,) ndarray
- The eigenvalues, each repeated according to its multiplicity. They are not necessarily ordered, nor are they necessarily real for real matrices. 
 
- Raises:
- LinAlgError
- If the eigenvalue computation does not converge. 
 
 - See also - eig
- eigenvalues and right eigenvectors of general arrays 
- eigvalsh
- eigenvalues of real symmetric or complex Hermitian (conjugate symmetric) arrays. 
- eigh
- eigenvalues and eigenvectors of real symmetric or complex Hermitian (conjugate symmetric) arrays. 
- scipy.linalg.eigvals
- Similar function in SciPy. 
 - Notes - Broadcasting rules apply, see the - numpy.linalgdocumentation for details.- This is implemented using the - _geevLAPACK routines which compute the eigenvalues and eigenvectors of general square arrays.- Examples - Illustration, using the fact that the eigenvalues of a diagonal matrix are its diagonal elements, that multiplying a matrix on the left by an orthogonal matrix, Q, and on the right by Q.T (the transpose of Q), preserves the eigenvalues of the “middle” matrix. In other words, if Q is orthogonal, then - Q * A * Q.Thas the same eigenvalues as- A:- >>> import numpy as np >>> from numpy import linalg as LA >>> x = np.random.random() >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]]) >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :]) (1.0, 1.0, 0.0) - Now multiply a diagonal matrix by - Qon one side and by- Q.Ton the other:- >>> D = np.diag((-1,1)) >>> LA.eigvals(D) array([-1., 1.]) >>> A = np.dot(Q, D) >>> A = np.dot(A, Q.T) >>> LA.eigvals(A) array([ 1., -1.]) # random