Search
Searching.
- numpy.ndarray.flatten
...Array objects The N-dimensional array (ndarray) numpy.ndarray numpy.ndarray.flatten...
- numpy.ndarray.flatten (Python method, in numpy.ndarray.flatten)
- How to index
ndarrays
...0, 1, 1, 2, 2]), array([0, 1, 2, 2, 3, 0, 1])) Use flatnonzero to fetch indices of elements that are non-zero in the flattened version of the ndarray: >>> np.flatnonzero(z) array([0, 1, 2, 6, 7, 8, 9]) Arbitrary conditions Use where...
- Internal organization of NumPy arrays
...nd, use of ndarray.flat with a FORTRAN ordered array will lead to non-optimal memory access as adjacent elements in the flattened array (iterator, actually) are not contiguous in memory. Indeed, the fact is that Python indexing on lists and...
- NumPy 1.11.0 Release Notes
...rguments for array ordering It is currently possible to pass in arguments for the order parameter in methods like array.flatten or array.ravel that were not one of the following: ‘C’, ‘F’, ‘A’, ‘K’ (note that all of these possible values ar...
- NumPy 1.12.0 Release Notes
...y given axis. np.count_nonzero now has an axis parameter, allowing non-zero counts to be generated on more than just a flattened array object. BLIS support in numpy.distutils Building against the BLAS implementation provided by the BLIS...
- NumPy 1.20.0 Release Notes
...API changes section). Same kind casting in concatenate with axis=None When concatenate is called with axis=None, the flattened arrays were cast with unsafe. Any other axis choice uses “same kind”. That different default has been deprecat...
- NumPy for MATLAB users
...e y=x y = x.copy() NumPy assigns by reference y=x(2,:) y = x[1, :].copy() NumPy slices are by reference y=x(:) y = x.flatten() turn array into vector (note that this forces a copy). To obtain the same data ordering as in MATLAB, use x.fl...
- NumPy quickstart
...g three commands all return a modified array, but do not change the original array: >>> a.ravel() # returns the array, flattened array([3., 7., 3., 4., 1., 4., 2., 2., 7., 2., 4., 9.]) >>> a.reshape(6, 2) # returns the array with a modifi...
- numpy.append
...e correct shape (the same shape as arr, excluding axis). If axis is not specified, values can be any shape and will be flattened before use. axisint, optionalThe axis along which values are appended. If axis is not given, both arr and va...
- numpy.argmax
...maximum values along an axis. Parameters: aarray_likeInput array. axisint, optionalBy default, the index is into the flattened array, otherwise along the specified axis. outarray, optionalIf provided, the result will be inserted into th...
- numpy.argmin
...minimum values along an axis. Parameters: aarray_likeInput array. axisint, optionalBy default, the index is into the flattened array, otherwise along the specified axis. outarray, optionalIf provided, the result will be inserted into th...
- numpy.argpartition
...dex is deprecated. axisint or None, optionalAxis along which to sort. The default is -1 (the last axis). If None, the flattened array is used. kind{‘introselect’}, optionalSelection algorithm. Default is ‘introselect’ orderstr or list o...
- numpy.argsort
...likeArray to sort. axisint or None, optionalAxis along which to sort. The default is -1 (the last axis). If None, the flattened array is used. kind{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optionalSorting algorithm. The default i...
- numpy.char.chararray.flatten
...Legacy fixed-width string functionality numpy.char.chararray numpy.char.chararray.flatten...
- numpy.char.chararray.ravel
...numpy.char.chararray.ravel method char.chararray.ravel([order]) Return a flattened array. Refer to numpy.ravel for full documentation. See also numpy.ravelequivalent function ndarray.flata f...
- numpy.compress
...keArray from which to extract a part. axisint, optionalAxis along which to take slices. If None (default), work on the flattened array. outndarray, optionalOutput array. Its type is preserved and it must be of the right shape to hold the...
- numpy.concat
...(the first, by default). axisint, optionalThe axis along which the arrays will be joined. If axis is None, arrays are flattened before use. Default is 0. outndarray, optionalIf provided, the destination to place the result. The shape mu...
- numpy.concatenate
...(the first, by default). axisint, optionalThe axis along which the arrays will be joined. If axis is None, arrays are flattened before use. Default is 0. outndarray, optionalIf provided, the destination to place the result. The shape mu...
- numpy.cumprod
...aarray_likeInput array. axisint, optionalAxis along which the cumulative product is computed. By default the input is flattened. dtypedtype, optionalType of the returned array, as well as of the accumulator in which the elements are mult...
- numpy.cumsum
...axisint, optionalAxis along which the cumulative sum is computed. The default (None) is to compute the cumsum over the flattened array. dtypedtype, optionalType of the returned array and of the accumulator in which the elements are summed...
- numpy.delete
.... axisint, optionalThe axis along which to delete the subarray defined by obj. If axis is None, obj is applied to the flattened array. Returns: outndarrayA copy of arr with the elements specified by obj removed. Note that delete does...
- numpy.diag
...or constructed diagonal array. See also diagonalReturn specified diagonals. diagflatCreate a 2-D array with the flattened input as a diagonal. traceSum along diagonals. triuUpper triangle of an array. trilLower triangle of an arr...
- numpy.diagflat
...numpy.diagflat numpy.diagflat(v, k=0)[source] Create a two-dimensional array with the flattened input as a diagonal. Parameters: varray_likeInput data, which is flattened and set as the k-th diagonal of t...
- numpy.ediff1d
...one)[source] The differences between consecutive elements of an array. Parameters: aryarray_likeIf necessary, will be flattened before the differences are taken. to_endarray_like, optionalNumber(s) to append at the end of the returned di...
- numpy.einsum
- numpy.flatiter
...indexed using basic slicing or advanced indexing. See also ndarray.flatReturn a flat iterator over an array. ndarray.flattenReturns a flattened copy of an array. Notes A flatiter iterator can not be constructed directly from Python co...
- numpy.flatnonzero
...numpy.flatnonzero numpy.flatnonzero(a)[source] Return indices that are non-zero in the flattened version of a. This is equivalent to np.nonzero(np.ravel(a))[0]. Parameters: aarray_likeInput data. Return...
- numpy.insert
...t arr[...,obj,...] = values is legal. axisint, optionalAxis along which to insert values. If axis is None then arr is flattened first. Returns: outndarrayA copy of arr with values inserted. Note that insert does not occur in-place: a...
- numpy.intersect1d
- numpy.isin
...array_likeInput array. test_elementsarray_likeThe values against which to test each value of element. This argument is flattened if it is an array or array_like. See notes for behavior with non-array-like parameters. assume_uniquebool, op...
- numpy.ma.argmin
...of indices to the minimum values along the given axis. Parameters: axis{None, integer}If None, the index is into the flattened array, otherwise along the specified axis fill_valuescalar or None, optionalValue used to fill in the masked...
- numpy.ma.argsort
- numpy.ma.count_masked
- numpy.ma.diagflat
...mpy.ma.diagflat ma.diagflat = <numpy.ma.extras._fromnxfunction_single object> Create a two-dimensional array with the flattened input as a diagonal. Parameters: varray_likeInput data, which is flattened and set as the k-th diagonal of t...
- numpy.ma.flatten_mask
- numpy.ma.flatten_structured_array
- numpy.ma.isin
- numpy.ma.masked_array.argmin
- numpy.ma.masked_array.argsort
- numpy.ma.masked_array.flatten
- numpy.ma.masked_array.nonzero
- numpy.ma.masked_array.ptp
- numpy.ma.masked_array.sort
- numpy.ma.masked_array.take
- numpy.ma.masked_array.var
- numpy.ma.MaskedArray.argmin
- numpy.ma.MaskedArray.argsort
- numpy.ma.MaskedArray.flatten
- numpy.ma.MaskedArray.nonzero
- numpy.ma.MaskedArray.ptp
- numpy.ma.MaskedArray.sort
- numpy.ma.MaskedArray.take
- numpy.ma.MaskedArray.var
- numpy.ma.MaskType.flatten
- numpy.ma.median
- numpy.ma.nonzero
- numpy.ma.notmasked_edges
- numpy.ma.outer
- numpy.ma.outerproduct
- numpy.ma.ptp
- numpy.ma.var
- numpy.matrix
- numpy.matrix.A1
- numpy.matrix.argmax
- numpy.matrix.argmin
- numpy.matrix.getA1
- numpy.matrix.ravel
- numpy.max
- numpy.mean
- numpy.median
- numpy.memmap.flatten
- numpy.memmap.ravel
- numpy.min
- numpy.nanargmax
- numpy.nanargmin
- numpy.nancumprod
- numpy.nancumsum
- numpy.nanmax
- numpy.nanmean
- numpy.nanmedian
- numpy.nanmin
- numpy.nanpercentile
- numpy.nanprod
- numpy.nanquantile
- numpy.nanstd
- numpy.nansum
- numpy.nanvar
- numpy.ndarray.flat
- numpy.ndarray.flatten
- numpy.ndarray.ravel
- numpy.ndarray.resize
- numpy.nested_iters
- numpy.nonzero
- numpy.outer
- numpy.packbits
- numpy.partition
- numpy.percentile
- numpy.polynomial.chebyshev.chebdomain
- numpy.polynomial.chebyshev.chebone
- numpy.polynomial.chebyshev.chebx
- numpy.polynomial.chebyshev.chebzero
- numpy.polynomial.hermite.hermdomain
- numpy.polynomial.hermite.hermone
- numpy.polynomial.hermite.hermx
- numpy.polynomial.hermite.hermzero
- numpy.polynomial.hermite_e.hermedomain
- numpy.polynomial.hermite_e.hermeone
- numpy.polynomial.hermite_e.hermex
- numpy.polynomial.hermite_e.hermezero
- numpy.polynomial.laguerre.lagdomain
- numpy.polynomial.laguerre.lagone
- numpy.polynomial.laguerre.lagx
- numpy.polynomial.laguerre.lagzero
- numpy.polynomial.legendre.legdomain
- numpy.polynomial.legendre.legone
- numpy.polynomial.legendre.legx
- numpy.polynomial.legendre.legzero
- numpy.polynomial.polynomial.polydomain
- numpy.polynomial.polynomial.polyone
- numpy.polynomial.polynomial.polyx
- numpy.polynomial.polynomial.polyzero
- numpy.ptp
- numpy.put
- numpy.put_along_axis
- numpy.quantile
- numpy.random.Generator.permuted