numpy.random.Generator.weibull#
method
- random.Generator.weibull(a, size=None)#
- Draw samples from a Weibull distribution. - Draw samples from a 1-parameter Weibull distribution with the given shape parameter a. \[X = (-ln(U))^{1/a}\]- Here, U is drawn from the uniform distribution over (0,1]. - The more common 2-parameter Weibull, including a scale parameter \(\lambda\) is just \(X = \lambda(-ln(U))^{1/a}\). - Parameters:
- afloat or array_like of floats
- Shape parameter of the distribution. Must be nonnegative. 
- sizeint or tuple of ints, optional
- Output shape. If the given shape is, e.g., - (m, n, k), then- m * n * ksamples are drawn. If size is- None(default), a single value is returned if- ais a scalar. Otherwise,- np.array(a).sizesamples are drawn.
 
- Returns:
- outndarray or scalar
- Drawn samples from the parameterized Weibull distribution. 
 
 - Notes - The Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III, or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV) distributions used in modeling extreme value problems. This class includes the Gumbel and Frechet distributions. - The probability density for the Weibull distribution is \[p(x) = \frac{a} {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},\]- where \(a\) is the shape and \(\lambda\) the scale. - The function has its peak (the mode) at \(\lambda(\frac{a-1}{a})^{1/a}\). - When - a = 1, the Weibull distribution reduces to the exponential distribution.- References [1]- Waloddi Weibull, Royal Technical University, Stockholm, 1939 “A Statistical Theory Of The Strength Of Materials”, Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939, Generalstabens Litografiska Anstalts Forlag, Stockholm. [2]- Waloddi Weibull, “A Statistical Distribution Function of Wide Applicability”, Journal Of Applied Mechanics ASME Paper 1951. [3]- Wikipedia, “Weibull distribution”, https://en.wikipedia.org/wiki/Weibull_distribution - Examples - Draw samples from the distribution: - >>> rng = np.random.default_rng() >>> a = 5. # shape >>> s = rng.weibull(a, 1000) - Display the histogram of the samples, along with the probability density function: - >>> import matplotlib.pyplot as plt >>> def weibull(x, n, a): ... return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a) >>> count, bins, _ = plt.hist(rng.weibull(5., 1000)) >>> x = np.linspace(0, 2, 1000) >>> bin_spacing = np.mean(np.diff(bins)) >>> plt.plot(x, weibull(x, 1., 5.) * bin_spacing * s.size, label='Weibull PDF') >>> plt.legend() >>> plt.show() 