numpy.random.choice#
- random.choice(a, size=None, replace=True, p=None)#
- Generates a random sample from a given 1-D array - New in version 1.7.0. - Note - New code should use the - choicemethod of a- Generatorinstance instead; please see the Quick Start.- Parameters:
- a1-D array-like or int
- If an ndarray, a random sample is generated from its elements. If an int, the random sample is generated as if it were - np.arange(a)
- sizeint or tuple of ints, optional
- Output shape. If the given shape is, e.g., - (m, n, k), then- m * n * ksamples are drawn. Default is None, in which case a single value is returned.
- replaceboolean, optional
- Whether the sample is with or without replacement. Default is True, meaning that a value of - acan be selected multiple times.
- p1-D array-like, optional
- The probabilities associated with each entry in a. If not given, the sample assumes a uniform distribution over all entries in - a.
 
- Returns:
- samplessingle item or ndarray
- The generated random samples 
 
- Raises:
- ValueError
- If a is an int and less than zero, if a or p are not 1-dimensional, if a is an array-like of size 0, if p is not a vector of probabilities, if a and p have different lengths, or if replace=False and the sample size is greater than the population size 
 
 - See also - randint,- shuffle,- permutation
- random.Generator.choice
- which should be used in new code 
 - Notes - Setting user-specified probabilities through - puses a more general but less efficient sampler than the default. The general sampler produces a different sample than the optimized sampler even if each element of- pis 1 / len(a).- Sampling random rows from a 2-D array is not possible with this function, but is possible with - Generator.choicethrough its- axiskeyword.- Examples - Generate a uniform random sample from np.arange(5) of size 3: - >>> np.random.choice(5, 3) array([0, 3, 4]) # random >>> #This is equivalent to np.random.randint(0,5,3) - Generate a non-uniform random sample from np.arange(5) of size 3: - >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0]) array([3, 3, 0]) # random - Generate a uniform random sample from np.arange(5) of size 3 without replacement: - >>> np.random.choice(5, 3, replace=False) array([3,1,0]) # random >>> #This is equivalent to np.random.permutation(np.arange(5))[:3] - Generate a non-uniform random sample from np.arange(5) of size 3 without replacement: - >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0]) array([2, 3, 0]) # random - Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance: - >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher'] >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3]) array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random dtype='<U11')