numpy.random.noncentral_chisquare#
- random.noncentral_chisquare(df, nonc, size=None)#
- Draw samples from a noncentral chi-square distribution. - The noncentral \(\chi^2\) distribution is a generalization of the \(\chi^2\) distribution. - Note - New code should use the - noncentral_chisquaremethod of a- Generatorinstance instead; please see the Quick Start.- Parameters:
- dffloat or array_like of floats
- Degrees of freedom, must be > 0. - Changed in version 1.10.0: Earlier NumPy versions required dfnum > 1. 
- noncfloat or array_like of floats
- Non-centrality, must be non-negative. 
- sizeint or tuple of ints, optional
- Output shape. If the given shape is, e.g., - (m, n, k), then- m * n * ksamples are drawn. If size is- None(default), a single value is returned if- dfand- noncare both scalars. Otherwise,- np.broadcast(df, nonc).sizesamples are drawn.
 
- Returns:
- outndarray or scalar
- Drawn samples from the parameterized noncentral chi-square distribution. 
 
 - See also - random.Generator.noncentral_chisquare
- which should be used for new code. 
 - Notes - The probability density function for the noncentral Chi-square distribution is \[P(x;df,nonc) = \sum^{\infty}_{i=0} \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} P_{Y_{df+2i}}(x),\]- where \(Y_{q}\) is the Chi-square with q degrees of freedom. - References [1]- Wikipedia, “Noncentral chi-squared distribution” https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution - Examples - Draw values from the distribution and plot the histogram - >>> import matplotlib.pyplot as plt >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show()   - Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare. - >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> values2 = plt.hist(np.random.chisquare(3, 100000), ... bins=np.arange(0., 25, .1), density=True) >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob') >>> plt.show()   - Demonstrate how large values of non-centrality lead to a more symmetric distribution. - >>> plt.figure() >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000), ... bins=200, density=True) >>> plt.show() 