numpy.ma.allclose#
- ma.allclose(a, b, masked_equal=True, rtol=1e-05, atol=1e-08)[source]#
- Returns True if two arrays are element-wise equal within a tolerance. - This function is equivalent to - allcloseexcept that masked values are treated as equal (default) or unequal, depending on the- masked_equalargument.- Parameters:
- a, barray_like
- Input arrays to compare. 
- masked_equalbool, optional
- Whether masked values in a and b are considered equal (True) or not (False). They are considered equal by default. 
- rtolfloat, optional
- Relative tolerance. The relative difference is equal to - rtol * b. Default is 1e-5.
- atolfloat, optional
- Absolute tolerance. The absolute difference is equal to atol. Default is 1e-8. 
 
- Returns:
- ybool
- Returns True if the two arrays are equal within the given tolerance, False otherwise. If either array contains NaN, then False is returned. 
 
 - See also - all,- any
- numpy.allclose
- the non-masked - allclose.
 - Notes - If the following equation is element-wise True, then - allclosereturns True:- absolute(`a` - `b`) <= (`atol` + `rtol` * absolute(`b`)) - Return True if all elements of a and b are equal subject to given tolerances. - Examples - >>> import numpy as np >>> a = np.ma.array([1e10, 1e-7, 42.0], mask=[0, 0, 1]) >>> a masked_array(data=[10000000000.0, 1e-07, --], mask=[False, False, True], fill_value=1e+20) >>> b = np.ma.array([1e10, 1e-8, -42.0], mask=[0, 0, 1]) >>> np.ma.allclose(a, b) False - >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) >>> b = np.ma.array([1.00001e10, 1e-9, -42.0], mask=[0, 0, 1]) >>> np.ma.allclose(a, b) True >>> np.ma.allclose(a, b, masked_equal=False) False - Masked values are not compared directly. - >>> a = np.ma.array([1e10, 1e-8, 42.0], mask=[0, 0, 1]) >>> b = np.ma.array([1.00001e10, 1e-9, 42.0], mask=[0, 0, 1]) >>> np.ma.allclose(a, b) True >>> np.ma.allclose(a, b, masked_equal=False) False