numpy.ma.make_mask#
- ma.make_mask(m, copy=False, shrink=True, dtype=<class 'numpy.bool'>)[source]#
- Create a boolean mask from an array. - Return m as a boolean mask, creating a copy if necessary or requested. The function can accept any sequence that is convertible to integers, or - nomask. Does not require that contents must be 0s and 1s, values of 0 are interpreted as False, everything else as True.- Parameters:
- marray_like
- Potential mask. 
- copybool, optional
- Whether to return a copy of m (True) or m itself (False). 
- shrinkbool, optional
- Whether to shrink m to - nomaskif all its values are False.
- dtypedtype, optional
- Data-type of the output mask. By default, the output mask has a dtype of MaskType (bool). If the dtype is flexible, each field has a boolean dtype. This is ignored when m is - nomask, in which case- nomaskis always returned.
 
- Returns:
- resultndarray
- A boolean mask derived from m. 
 
 - Examples - >>> import numpy as np >>> import numpy.ma as ma >>> m = [True, False, True, True] >>> ma.make_mask(m) array([ True, False, True, True]) >>> m = [1, 0, 1, 1] >>> ma.make_mask(m) array([ True, False, True, True]) >>> m = [1, 0, 2, -3] >>> ma.make_mask(m) array([ True, False, True, True]) - Effect of the shrink parameter. - >>> m = np.zeros(4) >>> m array([0., 0., 0., 0.]) >>> ma.make_mask(m) False >>> ma.make_mask(m, shrink=False) array([False, False, False, False]) - Using a flexible - dtype.- >>> m = [1, 0, 1, 1] >>> n = [0, 1, 0, 0] >>> arr = [] >>> for man, mouse in zip(m, n): ... arr.append((man, mouse)) >>> arr [(1, 0), (0, 1), (1, 0), (1, 0)] >>> dtype = np.dtype({'names':['man', 'mouse'], ... 'formats':[np.int64, np.int64]}) >>> arr = np.array(arr, dtype=dtype) >>> arr array([(1, 0), (0, 1), (1, 0), (1, 0)], dtype=[('man', '<i8'), ('mouse', '<i8')]) >>> ma.make_mask(arr, dtype=dtype) array([(True, False), (False, True), (True, False), (True, False)], dtype=[('man', '|b1'), ('mouse', '|b1')])