numpy.ma.mask_rowcols#
- ma.mask_rowcols(a, axis=None)[source]#
- Mask rows and/or columns of a 2D array that contain masked values. - Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected using the axis parameter. - If axis is None, rows and columns are masked. 
- If axis is 0, only rows are masked. 
- If axis is 1 or -1, only columns are masked. 
 - Parameters:
- aarray_like, MaskedArray
- The array to mask. If not a MaskedArray instance (or if no array elements are masked), the result is a MaskedArray with mask set to - nomask(False). Must be a 2D array.
- axisint, optional
- Axis along which to perform the operation. If None, applies to a flattened version of the array. 
 
- Returns:
- aMaskedArray
- A modified version of the input array, masked depending on the value of the axis parameter. 
 
- Raises:
- NotImplementedError
- If input array a is not 2D. 
 
 - See also - mask_rows
- Mask rows of a 2D array that contain masked values. 
- mask_cols
- Mask cols of a 2D array that contain masked values. 
- masked_where
- Mask where a condition is met. 
 - Notes - The input array’s mask is modified by this function. - Examples - >>> import numpy as np >>> a = np.zeros((3, 3), dtype=int) >>> a[1, 1] = 1 >>> a array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) >>> a = np.ma.masked_equal(a, 1) >>> a masked_array( data=[[0, 0, 0], [0, --, 0], [0, 0, 0]], mask=[[False, False, False], [False, True, False], [False, False, False]], fill_value=1) >>> np.ma.mask_rowcols(a) masked_array( data=[[0, --, 0], [--, --, --], [0, --, 0]], mask=[[False, True, False], [ True, True, True], [False, True, False]], fill_value=1)