numpy.ma.vander#
- ma.vander(x, n=None)[source]#
- Generate a Vandermonde matrix. - The columns of the output matrix are powers of the input vector. The order of the powers is determined by the increasing boolean argument. Specifically, when increasing is False, the i-th output column is the input vector raised element-wise to the power of - N - i - 1. Such a matrix with a geometric progression in each row is named for Alexandre- Theophile Vandermonde.- Parameters:
- xarray_like
- 1-D input array. 
- Nint, optional
- Number of columns in the output. If N is not specified, a square array is returned ( - N = len(x)).
- increasingbool, optional
- Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed. 
 
- Returns:
- outndarray
- Vandermonde matrix. If increasing is False, the first column is - x^(N-1), the second- x^(N-2)and so forth. If increasing is True, the columns are- x^0, x^1, ..., x^(N-1).
 
 - See also - Notes - Masked values in the input array result in rows of zeros. - Examples - >>> import numpy as np >>> x = np.array([1, 2, 3, 5]) >>> N = 3 >>> np.vander(x, N) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) - >>> np.column_stack([x**(N-1-i) for i in range(N)]) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]]) - >>> x = np.array([1, 2, 3, 5]) >>> np.vander(x) array([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]]) >>> np.vander(x, increasing=True) array([[ 1, 1, 1, 1], [ 1, 2, 4, 8], [ 1, 3, 9, 27], [ 1, 5, 25, 125]]) - The determinant of a square Vandermonde matrix is the product of the differences between the values of the input vector: - >>> np.linalg.det(np.vander(x)) 48.000000000000043 # may vary >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) 48