numpy.ma.compress_rowcols#
- ma.compress_rowcols(x, axis=None)[source]#
- Suppress the rows and/or columns of a 2-D array that contain masked values. - The suppression behavior is selected with the axis parameter. - If axis is None, both rows and columns are suppressed. 
- If axis is 0, only rows are suppressed. 
- If axis is 1 or -1, only columns are suppressed. 
 - Parameters:
- xarray_like, MaskedArray
- The array to operate on. If not a MaskedArray instance (or if no array elements are masked), x is interpreted as a MaskedArray with mask set to - nomask. Must be a 2D array.
- axisint, optional
- Axis along which to perform the operation. Default is None. 
 
- Returns:
- compressed_arrayndarray
- The compressed array. 
 
 - Examples - >>> import numpy as np >>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0], ... [1, 0, 0], ... [0, 0, 0]]) >>> x masked_array( data=[[--, 1, 2], [--, 4, 5], [6, 7, 8]], mask=[[ True, False, False], [ True, False, False], [False, False, False]], fill_value=999999) - >>> np.ma.compress_rowcols(x) array([[7, 8]]) >>> np.ma.compress_rowcols(x, 0) array([[6, 7, 8]]) >>> np.ma.compress_rowcols(x, 1) array([[1, 2], [4, 5], [7, 8]])