numpy.ma.hsplit#
- ma.hsplit = <numpy.ma.extras._fromnxfunction_single object>#
- Split an array into multiple sub-arrays horizontally (column-wise). - Please refer to the - splitdocumentation.- hsplitis equivalent to- splitwith- axis=1, the array is always split along the second axis except for 1-D arrays, where it is split at- axis=0.- See also - split
- Split an array into multiple sub-arrays of equal size. 
 - Notes - The function is applied to both the _data and the _mask, if any. - Examples - >>> import numpy as np >>> x = np.arange(16.0).reshape(4, 4) >>> x array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [12., 13., 14., 15.]]) >>> np.hsplit(x, 2) [array([[ 0., 1.], [ 4., 5.], [ 8., 9.], [12., 13.]]), array([[ 2., 3.], [ 6., 7.], [10., 11.], [14., 15.]])] >>> np.hsplit(x, np.array([3, 6])) [array([[ 0., 1., 2.], [ 4., 5., 6.], [ 8., 9., 10.], [12., 13., 14.]]), array([[ 3.], [ 7.], [11.], [15.]]), array([], shape=(4, 0), dtype=float64)] - With a higher dimensional array the split is still along the second axis. - >>> x = np.arange(8.0).reshape(2, 2, 2) >>> x array([[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]]) >>> np.hsplit(x, 2) [array([[[0., 1.]], [[4., 5.]]]), array([[[2., 3.]], [[6., 7.]]])] - With a 1-D array, the split is along axis 0. - >>> x = np.array([0, 1, 2, 3, 4, 5]) >>> np.hsplit(x, 2) [array([0, 1, 2]), array([3, 4, 5])]