numpy.ma.intersect1d#
- ma.intersect1d(ar1, ar2, assume_unique=False)[source]#
- Returns the unique elements common to both arrays. - Masked values are considered equal one to the other. The output is always a masked array. - See - numpy.intersect1dfor more details.- See also - numpy.intersect1d
- Equivalent function for ndarrays. 
 - Examples - >>> import numpy as np >>> x = np.ma.array([1, 3, 3, 3], mask=[0, 0, 0, 1]) >>> y = np.ma.array([3, 1, 1, 1], mask=[0, 0, 0, 1]) >>> np.ma.intersect1d(x, y) masked_array(data=[1, 3, --], mask=[False, False, True], fill_value=999999)